Skip to main content
Tim Zuehlsdorff Profile Picture

Tim Joachim Zuehlsdorff

Assistant Professor
Department of Chemistry

Tim Joachim Zuehlsdorff

Assistant Professor
Department of Chemistry


I am an Assistant Professor in Theoretical/Physical Chemistry at Oregon State University. My main research interest lies in developing computational techniques capable of predicting the optical properties of large systems, ranging from solvated dyes to semiconductor nanoparticles and pigment-protein complexes. The approaches I use are based on time-dependent density-functional theory (TDDFT). I have developed a computational approach to linear-response TDDFT that scales linearly with the number of electrons, allowing the study of system sizes far beyond the reach of conventional cubic scaling approaches. I am also a developer of the ONETEP linear-scaling density-functional theory (DFT) package.

A further interest of mine is to study how polarization effects, as well as the coupling of the electronic excitations to nuclear vibrations influences the absorption and fluorescence line shapes of chromophores embedded in complex environments, such as solvents and photoactive proteins. I am also modeling the influences of the complex environment on non-linear spectroscopy such as 2D electronic spectroscopy (2DES), with a specific focus of how the quantum treatment of complex protein environments alters signatures of vibronic coherences in photoactive proteins.


The Zuehlsdorff Group is a Theoretical/Physical Chemistry group in the Department of Chemistry at Oregon State University. We are interested in studying the optical properties of systems in complex environments, ranging from solvated dyes, to nanostructured materials and pigment-protein complexes. 

Our research focuses on improving computational methods for modeling excited states in the condensed phase (including methods specifically geared towards modeling large system sizes), as well as developing novel theoretical approaches to spectroscopy. Further information can be found on our research website. 



Postdoctoral Scholar, University of California Merced (2016-2020)

Postdoctoral Scholar, Cambridge University (2014-2016)

Ph.D. Imperial College London (2015)

MSci Imperial College London (2011)

BSc Imperial College London (2010)


  • T. J. Zuehlsdorff, S. V. Shedge, S.-Y. Lu, H. Hong, V. P. Aguirre, L. Shi, C. M. Isborn, Vibronic and Environmental Effects in Simulations of Optical Spectroscopy, Annu. Rev. Phys. Chem. 72 (2021)
  • M. S. Chen, T. J. Zuehlsdorff, T. Morawietz, C. M. Isborn, T. E. Markland, Exploiting Machine Learning to Efficiently Predict Multidimensional Optical Spectra in Complex Environments, J. Phys. Chem. Lett. 11 (18), 7559-7568 (2020)
  • T. J. Zuehlsdorff, H. Hong, L. Shi, C. M. Isborn, Nonlinear spectroscopy in the condensed phase: The role of Duschinsky rotations and third order cumulant contributions, J. Chem. Phys. 153, 044127 (2020)
  • J. C. A. Prentice, J. Aarons, J. C. Womack, A. E. A. Allen, L. Andrinopoulos, L. Anton, R. A. Bell, A. Bhandari, G. A. Bramley, R. J. Charlton, R. J. Clements, D. J. Cole, G. Constantinescu, F. Corsetti, S. M.-M. Dubois, K. K. B. Duff, J. M. Escartín, A. Greco, Q. Hill, L. P. Lee, E. Linscott, D. D. O’Regan, M. J. S. Phipps, L. E. Ratcliff, Á. R. Serrano, E. W. Tait, G. Teobaldi, V. Vitale, N. Yeung, T. J. Zuehlsdorff, J. Dziedzic, P. D. Haynes, N. D. M. Hine, A. A. Mostofi, M. C. Payne, C.-K. Skylaris, The ONETEP linear-scaling density functional theory program, J. Chem. Phys. ESS2020, 174111 (2020)
  • T. J. Zuehlsdorff, H. Hong, L. Shi, C. M. Isborn, Influence of Electronic Polarization on the Spectral Density, J. Phys. Chem. B 124 (3), 531-543 (2019)
  • T. J. Zuehlsdorff, A. Montoya-Castillo, J. A. Napoli, T. E. Markland, and C. M. Isborn, Optical Spectra in the Condensed Phase: Capturing Anharmonic and Vibronic Features Using Dynamic and Static Approaches, J. Chem. Phys. 151, 074111 (2019)
  • S. V. Shedge, T. J. Zuehlsdorff, M. J. Servis, A. E. Clark, and C. M. Isborn, Effect of Ions on the Optical Absorption Spectra of Aqueously Solvated Chromophores, J. Phys. Chem. A 123 (29), 6175-6184 (2019)
  • T. J. Zuehlsdorff, C. M. Isborn, Modeling absorption spectra of molecules in solution, Int. J. Quantum. Chem. 119 (1), e25719 (2019)
  • T. J. Zuehlsdorff, J. A. Napoli, J. M. Milanese, T. E. Markland, and C. M. Isborn, Unraveling Electronic Absorption Spectra using Nuclear Quantum Effects: Photoactive Yellow Protein and Green Fluorescent Protein Chromophores in Water, J. Chem. Phys. 149, 024107 (2018)
  • J.-H. Li, T. J. Zuehlsdorff, M. C. Payne, and N. D. M. Hine, Photophysics and Photochemistry of DNA Molecules – Electronic Excited States Leading to Thymine Dimerization, J. Phys. Chem. C 122, 11633 (2018)
  • R. J. Charlton, R. M. Fogarty, S. Bogatko, T. J. Zuehlsdorff, N. D. M. Hine, M. Heeney, A. P. Horsfield, and P. D. Haynes, Implicit and explicit host effects on excitons in pentacene derivatives, J. Chem. Phys. 148, 104108 (2018)
  • T. J. Zuehlsdorff, and C. M. Isborn, Combining the Ensemble and Franck-Condon Approaches for Spectral Shapes of Molecules in Solution, J. Chem. Phys. 148, 024110 (2018)
  • J. Joseph, K. Koehler, T. J. Zuehlsdorff, D. J. Cole, K. N. Baumann, J. Weber, S. E. Bohndiek, and S. Hernandez-Ainsa, Distance dependent photoacoustics revealed through DNA nanostructures, Nanoscale 9, 16193-16199 (2017)
  • T. J. Zuehlsdorff, P. D. Haynes, M. C. Payne, and N. D. M. Hine, Predicting solvatochromic shifts and colours of a solvated organic dye: The example of nile red, J. Chem. Phys. 146, 124504 (2017)
  • T. J. Zuehlsdorff, P. D. Haynes, F. Hanke, M. C. Payne, and N. D. M. Hine, Solvent effects on electronic excitations of an organic chromophore, J. Chem. Theory Comput. 12 (4), 1853-1861 (2016)
  • T. J. Zuehlsdorff, N. D. M. Hine, M. C. Payne, P. D. Haynes, Linear-scaling time-dependent density-functional theory (TDDFT) beyond the Tamm-Dancoff approximation: obtaining efficiency and accuracy with in situ optimised local orbitals, J. Chem. Phys. 143, 204107 (2015)
  • J.-H. Li, T. J. Zuehlsdorff, M. C. Payne, and N. D. M. Hine, Identifying and tracing potential energy surfaces of electronic excitations with specific character via their transition origins: application to oxirane, Phys. Chem. Chem. Phys. 17, 12065 (2015)
  • T. J. Zuehlsdorff, N. D. M. Hine, J. S. Spencer, N. M. Harrison, D. J. Riley, and P. D. Haynes, Linear-scaling time-dependent density-functional theory in the linear-response formalism, J. Chem. Phys. 139, 064104 (2013)
  • T. J. Zuehlsdorff, Computing the Optical Properties of Large Systems, Springer International Publishing (Switzerland, 2015), ISBN: 978-3-319-19769-2