
ON NORMALIZED MULTIPLICATIVE CASCADES UNDER STRONG

DISORDER

PARTHA S. DEY1 AND EDWARD C. WAYMIRE2

Abstract. Multiplicative cascades, under weak or strong disorder, refer to sequences of positive ran-
dom measures µ

n,�

, n = 1, 2, . . . , parameterized by a positive disorder parameter �, and defined on the
Borel �-field B of @T = {0, 1, . . . b�1}1 for the product topology. The normalized cascade is defined by
the corresponding sequence of random probability measures prob

n,�

:= Z�1
n,�

µ
n,�

, n = 1, 2 . . . , normal-

ized to a probability by the partition function Z
n,�

. In this note, a recent result of Madaule [27, 2011]
is used to explicitly construct a family of tree indexed probability measures prob1,�

for strong dis-
order parameters � > �

c

, almost surely defined on a common probability space. Moreover, viewing
{prob

n,�

: � > �
c

}1
n=1 as a sequence of probability measure valued stochastic process leads to finite di-

mensional weak convergence in distribution to a probability measure valued process {prob1,�

: � > �
c

}.
The limit process is constructed from the tree-indexed random field of derivative martingales, and the
Brunet-Derrida-Madaule decorated Poisson process. A number of corollaries are provided to illustrate
the utility of this construction.

1. Introduction

The relationship between branching random walks and multiplicative cascades has a long history,
going back to the early works of [10] and of [25], respectively. Recent results from the latter are exploited
in the present note to obtain the distribution of the normalized multiplicative cascade probability under
strong disorder conditions.

Branching random walks, as discretizations of branching Brownian motion, provide a natural proba-
bilistic structure that is known to occur, for example, in the context of reaction-dispersion equations of
the type introduced by Fisher, Kolmogorov, Petrovskii and Piskounov; see [26] and references therein.

Originating in statistical turbulence and other areas in which singular intermittent random distri-
butions arise, multiplicative cascades are random measures that define prototypical models of disorder;
see [25] for a seminal mathematical formulation whose inspiration is attributed to Benoit Mandelbrot.
Much of the early work on multiplicative cascades involved the fine-scale (multifractal) structure of
a limiting cascade distribution under conditions that have come to be referred to as weak disorder.
In such cases the total mass defines a positive martingale sequence with a non-trivial a.s. limit. In
particular, the cascade measure can easily be normalized to a (random) probability measure to obtain
an a.s. weak limit. On the other hand, while compactness of the tree boundary ensures tightness, such
almost sure weak limits are not expected to exist under strong disorder.

However, as shown in [24] and in [7], respectively, there is a weak limit in probability at critical strong
disorder, or the so-called boundary case, and a weak limit in distribution under strict (non-critical)
strong disorder. In particular a (random) probability can be defined in the infinite path limit under
strong disorder. This latter result will also follow from the analysis presented here, but the focus of this
note is rather on the structure of these weak limits and their mutual relation as a stochastic process
indexed by the disorder parameter � > �c. Toward this goal an integral representation is provided
together with a limiting process, in the sense of weak convergence finite dimensional distributions,
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2 DEY AND WAYMIRE

defined almost surely as a function of � on a single probability space. This is then used to provide
mutual absolute continuity between the disorder limits, formulae for the Radon-Nikodym derivatives,
and an explicit description of the genealogy near the root as corollaries. Moreover, it is shown that as
a probability measure valued process, the limit process indexed by � > �c has a.s. continuous paths
in the weak-* topology; in fact in the total-variation norm. The basic approach is to construct a tree-
indexed derivative martingale random field, and then exploit recent consequences of superposability
due to [16,27].

2. Background Definitions and Notation

To clearly describe the focus of this note it is convenient to introduce some standard notation
defining a multiplicative cascade, and its normalization to a probability. While the results may be
more generally formulated for cascades on more general classes of trees, including Galton-Watson
supercritical branching processes subject to a Kesten-Stigum condition on the o↵spring distribution,
we restrict the presentation to directed binary trees for simplicity of exposition.

Consider the infinite binary tree defined by the following set of vertices T =
S1

n=0{�1,+1}n with
edges defined by pairs of vertices of the form v = (v1, . . . , vn), and its parent v|(n�1) = (v1, . . . , vn�1),
and rooted at ; in correspondence with {�1, 1}0. The boundary of T is defined by @T = {�1, 1}N, with
the product topology. An 1-tree path is denoted by s = (s1, s2, . . .) 2 @T . We will also consider finite
tree paths s = (s1, . . . , sn) 2 T\{;} of length |s| = n, and for s = (s1, s2, . . .) 2 @T, continue to use the
notation s|n := (s1, s2, . . . , sn), read “s restricted to n”, for truncation. Also, for v 2 T, k = |v| 6 n
we define

�(v) := {s 2 @T : s|k = v} and �n(v) := {s 2 {�1,+1}n : s|k = v}
as the 1-paths passing through the vertex v and the vertices at level n below the vertex v, respectively.

Suppose one is given a collection {Xv | v 2 T} of i.i.d. positive random variables indexed by T
and defined on a probability space (⌦,F ,P). Denote by X a generic random variable having the

common distribution of each Xv and assume that E(X) = 1. Let �(ds) =
�
1
2�+1(ds) +

1
2��1(ds)

�N
on

(@T,B), and define the sequence of positive (random) measures µn(ds), n > 1, absolutely continuous
with respect to �(ds), via their sequence of Radon-Nikodym derivatives given by

dµn

d�
(s) =

nY

j=1

Xs|j . (2.1)

Note that
R
@T f(s)µn(ds), n > 1, is a bounded martingale for any bounded, continuous function f on

@T. The corresponding sequence of normalized (random) probability measures probn(ds) on @T is
defined by

dprobn
d�

(s) = M�1
n

nY

j=1

Xs|j , (2.2)

where the partition function Mn normalizes µn, to a probability measure. Note that

Mn = 2�n
X

|s|=n

nY

j=1

Xs|j (2.3)

has mean 1. The sequence of non-normalized measures µn(ds), n > 1, is referred to as a multiplicative
cascade and is the main object of our analysis.

In this framework, the notions of weak disorder and strong disorder, e.g., see Bolthausen [14] for
these notions in the present context, provide a well-known dichotomy defined in terms of the asymptotic
behavior of the partition function as follows. First note that the sequence of (normalized) partition
functions Mn, n > 1, is a positive martingale, so M1 := limn!1Mn exists a.s. in (⌦,F ,P). By
positivity of the factors defining the path probabilities, the event [M1 = 0] is a tail event and thus
by Kolmogorov’s zero-one law, P(M1 = 0) must equal zero or one. Kahane and Peyrière [25] for
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multiplicative cascades, and (independently) Biggins, Hammersley and Kingman [10], for branching
random walks, had already obtained the following precise conditions for the disorder dichotomy:

P(M1 > 0) = 1 () E(X logX) < log 2. (2.4)

In the case for which [M1 > 0] a.s., the cascade is said to be in a state of weak disorder, whereas if
[M1 = 0] a.s., the cascade is in a state of strong disorder. Note that the deterministic environment
X ⌘ 1 a.s. can be regarded informally as the “weakest” of the weak disorder regimes where Mn ⌘ 1
and µn(ds) ⌘ �(ds). The special case

E(X logX) = log 2, (2.5)

belongs to the strong disorder regime as critical disorder, or the boundary case. For example, in the
case when X = exp(��N � �2/2) with N being standard normal distributed, the boundary case
corresponds to � =

p
2 log 2, with the strong disorder regime obtained for � > p

2 log 2.
To describe the limit distribution of the (re-scaled) partition function in the critical case

E(X logX) = log 2 or E(X(log 2� logX)) = 0, let us recall the derivative martingale in the boundary
case of the branching random walk; see [11]. We have that

Dn = 2�n
X

|s|=n

nX

j=1

�
log 2� logXs|j

� nY

j=1

Xs|j , n > 1, (2.6)

is an L1-bounded martingale having an a.s. positive limit D1, and referred to as the derivative mar-
tingale; see [26] for additional historic background in the contexts of branching random walk and
branching Brownian motion. Under some natural regularity conditions on X, Aidekon and Shi [2]
proved that

p
nMn/Dn converges in probability to

p
2/⇡�2 where �2 := E(X(log 2� logX)2).

Additional insight into the relevance of the derivative martingale to multiplicative cascade theory
can be obtained by considering the basic stochastic cascade recursion

B
d
= A�1B�1 +A+1B+1, (2.7)

where B±1 are i.i.d. non-negative r.v.s having the same distribution as B, and A±1 are i.i.d. non-
negative r.v.s having mean 1/2, and independent of B±1. The recursion (2.7) is a well-studied recursion
in a variety of contexts, see [12]

Under weak disorder B = M1 is the nontrivial solution for A±1 = 1
2X±1, unique up to positive

constant multiples. However, at strong disorder one has M1 = 0 a.s; i.e., a trivial solution to (2.7).
Nonetheless there is a nontrivial solution in the (non-lattice) boundary case, namely a constant multiple
of D1; see [23, 26].

It is generally well-known as a result of early work originating in [20] that under strong disorder
the solution (fixed point) of the random recursion (2.7) coincides with a multiple of a Lévy stable
process stopped at D1; see [26] for a summary and extensions. The results to follow provide a more
detailed analysis of the structure of this solution, through its explicit connections to the extremes
of the associated branching random walk, that facilitates the almost sure construction of the limit
probabilities prob1(ds).

To close this section let us note that tree polymers provide an essentially equivalent formulation that
can be described as follows. Namely, when X = exp(��W )/E e��W for some � > 0, the sequence
of random probability measures {probn(ds) : n > 1} is also referred to as a tree polymer on (@T,B)
at inverse temperature �. Assuming that W is a random variable with '(�) := E e��W < 1 for all
� > 0, the dichotomy (2.4) for the r.v. X = '(�)�1e��W gives the critical disorder as � = �c where
(��1 log(2'(�)))0

��
�=�

c

= 0 and the weak disorder as � < �c. By centering and scaling appropriately,

i.e., working with �cW + log(2'(�c)) instead of W , without loss of generality we can assume the
so-called boundary case defined by

E(e�W ) =
1

2
and E(We�W ) = 0. (2.8)



4 DEY AND WAYMIRE

Thus with Xv = '(�)�1e��W
v , v 2 T the strong disorder corresponds to � > 1. The exponent defined

by (3.1) is given by ↵ = 1/� in this framework.
We define the energy of a finite path s 2 T as

H(s) =

|s|X

i=1

Ws|i for s 2 T

and will sometimes use Hn(s) instead of H(s) when |s| = n to emphasize the dependence on n.
Also, in this context the partition function is defined as Zn(�) :=

P
|s|=n e

��H(s). We also define, for
v 2 T, |v| 6 n

Zn(�; v) =
X

s2�
n

(v)

e��(H(s)�H(v)). (2.9)

Then (2.9) can be understood as the partition function at the vertex v. Clearly Zn(�) = Zn(�; ;). One
may note that the scaling of the partition function implies a certain centering of the branching random
walkers induced by the path energies Hn(s), |s| = n, that may explicitly be expressed as follows:

n
3
2�Zn(�) =

X

|s|=n

e��(H
n

(s)� 3
2 logn).

When X = '(�)�1e��W , we will use µn,� and probn,� for (2.1) and (2.2), respectively. Note that the
normalization constant Mn in (2.3), is the same as (2'(�))�nZn(�). Also, we have for v 2 T, |v| < n

µn,�(�(v)) = (2'(�))�ne��H(v)Zn(�; v)

and probn,�(�(v)) = e��H(v)Zn(�; v)/Zn(�).

We will also use the following definitions for finite-dimensional convergence.

Definition 2.1. Let @T = {0, 1}1 with the product topology. Let Cfin denote the set of bounded,
(continuous) functions g : @T ! R depending on finitely many coordinates. Let Fn, n = 1, 2, . . . ,
be the filtration generated, respectively, by the coordinate projections ⇡j , j 6 n, where ⇡j(t) = tj.
Suppose that ⌫n is a sequence of probabilities on (@T,Fn), and B = F1. Then we say ⌫n converges in
finite-dimensional distribution to ⌫ if

R
@T g(t)⌫n(dt) !

R
@T g(t)⌫(dt) for all g 2 Cfin.

Definition 2.2. Suppose ⇧n = {⌫n(�, dt) : � 2 I} is a sequence of probability measure valued stochastic
processes on (Fn⇥⌦,�⇥P ), respectively, where � is Haar measure on B � Fn for all n. Then we say
one has finite dimensional weak convergence in distribution of ⇧n to ⇧ if for any finite �1,�2, . . . ,�m in
I, one has (

R
@T gi(t)⇧n(�i, dt))mi=1 ! (

R
@T gi(t)⇧(�i, dt))mi=1 in distribution for all gi 2 Cf , 1 6 i 6 m.

3. Main Results

With the previous section as background, let X be a positive random variable with mean one and
satisfying the strict strong disorder condition E(X logX) > log 2 for the multiplicative cascade defined
in (2.1). By calculations of the type given in [22], it is easy to see the following (scale invariant) fact.

Lemma 3.1. Assume that EX = 1 and EX logX > log 2. Then there is a unique ↵ 2 (0, 1) such that

E

✓
X↵

EX↵
log

X↵

EX↵

◆
= log 2. (3.1)

Proof. Let ⇢(↵) = E( X↵

EX↵

log2X). The assertion is equivalent to the existence of a unique ↵ 2 (0, 1)
such that

↵⇢(↵)� log2 EX↵ = 1.

The left side is zero at ↵ = 0 and, at ↵ = 1 it is ⇢(1) = EX log2X > 1. Moreover, it follows from
the Cauchy-Schwarz inequality that the left side is also an increasing function of ↵. So the assertion
follows from these observations together with continuity of the left hand side. ⌅
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Let us define

W := log 2 + logE(X↵)� ↵ logX (3.2)

so that W satisfies E(e�W ) = 1/2 and E(We�W ) = 0.
Next we construct a collection of random variables indexed by the vertices of the infinite binary

tree that will appear in the joint convergence of the partition functions at di↵erent vertices at the
critical disorder, i.e., � = 1. This tree-indexed derivative martingale random field provides an essential
ingredient of the eventual construction. Recall that, the derivative martingale is defined as

Dn :=
X

|s|=n

H(s)e�H(s)

and has an a.s. positive limit D1 satisfying the distributional recursion (2.7), i.e., e�W�1D1(�1) +

e�W+1D1(+1)
d
= D1 where D1(±1) are i.i.d. ⇠ D1.

Assume that {Wv : v 2 T} is a collection of i.i.d. random variables each distributed as W and
indexed by T. Fix a positive integer k. For v 2 T, |v| = k, let D(v) be i.i.d. copies of D1. Now
inductively for i = k � 1, k � 2, . . . , 0, define

D(v) := D(v,�1)e�W
v,�1 +D(v,+1)e�W

v,+1 for v 2 T, |v| = i. (3.3)

It is easy to see that for any fixed i 6 k, {D(v), |v| = i} are i.i.d. copies of D1 and thus {D(v) :
|v| 6 k} is a consistent family of distributions. By Kolmogorov’s consistency theorem there exists a
(denumerable) tree-indexed collection of random vectors

D1 := {(Wv, D1(v)) : v 2 T} (3.4)

such that the finite-dimensional distribution restricted to {v : |v| 6 k} is given by the above construc-
tion (3.3).

Now define the interval I(;) = [0, D1(;)). One can think of the tree-indexed derivative martingales
D1 as providing a way in which to partition the interval I(;) into successively smaller intervals. Define

I(�1) = [0, e�W�1D1(�1))

and I(+1) = [e�W�1D1(�1), e�W+1D1(+1) + e�W�1D1(�1)).

Note that D1(;) = e�W�1D1(�1) + e�W+1D1(+1) a.s. by construction and thus I(+1), I(�1) is
a partition of I(;). Now to define I(v) for v 2 T, |v| = k, consider the lexicographic ordering on
{�1,+1}k, i.e., for u, v 2 {�1,+1}k, u � v i↵ there exists i 2 {0, 1, . . . , k} such that u|i = v|i and
ui+1 < vi+1. Now, for v 2 T, |v| = k define

I(v) :=

 X

u�v

e�H(u)D1(u), e�H(v)D1(v) +
X

u�v

e�H(u)D1(u)

◆
. (3.5)

One can easily check that the collection of intervals {I(v) : v 2 T} respects the tree structure in terms
of set-inclusion, i.e., if v is an ancestor of u then I(u) ✓ I(v).

Here we note that, any infinite path s 2 @T can be represented by a point t(s) 2 I(;) and conversely
any point t0 2 I(;) corresponds to a unique path s = s(t0) 2 @T in the sense that {t} =

T1
k=1 I(s|k).

Let ✓ > 0 be a fixed real number. Consider a decorated (or marked) Poisson point process N in
R ⇥ [0,1) with intensity measure exdtdx, (x, t) 2 R ⇥ [0,1) and the decoration at the point (x, t)
given by Vx,t which are i.i.d. copies of a point process V . Let {(Wv, D1(v)) : v 2 T} be a collection
of random variables indexed by the vertices of T as constructed above, and independent of N . Fix a
real number ✓ > 0.

Now for any ↵ 2 (0, 1) and v 2 T, define

I↵(v) =
Z

R⇥✓I(v)
e�z/↵N (dz ⇥ dt) =

X

(x,t)2N

e�x/↵1t/✓2I(v)
X

y2V
x,t

e�y/↵. (3.6)

With these preliminaries, the main result of this note may now be stated as follows.
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Theorem 3.2. Assume that the distribution of W is non-lattice, satisfies the boundary condition (2.8)
and the following size-biased moment is finite:

E(W 2 + log+(e
�W +We�W ))e�W < 1 (3.7)

Then, we have for any �1,�2, . . . ,�k 2 (1,1) and v1, v2, . . . , vk 2 T

{n3�
i

/2e��H(v
i

)Zn(�i; vi) : i = 1, 2, . . . , k} ) {I1/�
i

(vi) : i = 1, 2, . . . , k}
in the sense of convergence in distribution for some ✓ > 0 and some point process V . In particular,
there are random probability measures prob1,�(ds) on @T parameterized by � > 1 and defined on a
common probability space such that

{probn,�(�(v)) : v 2 T} ) {prob1,�(�(v)) : v 2 T},
where ) denotes finite-dimensional convergence in distribution and

prob1,�(�(v)) := I1/�(v)/I1/�(;) ⌘ I�1
1/�(;)

Z

R⇥✓I(v)
e��zN (dz ⇥ dt), v 2 T.

Remark 3.3. The physics of random distributions of the type obtained here can be phrased in terms of
metastates as defined in [3]. In fact, we prove finite-dimensional convergence of the joint distribution of
the probn,�’s and the disorder, i.e., the Wv’s. This defines a metastate in the Aizenman-Wehr sense [3].
Related notions occur in the mathematical physics literature [15, 30]. For example, a metastate in the
sense of Newman-Stein requires that one condition on the disorder first, and then obtain the limit of
an empirical distribution of the probn

k

’s along some sparse (but deterministic) subsequences nk. The
more purely probabilistic content follows the perspective of Aldous’ [4] objective approach in which one
may view the construction of the random objects prob1,� as natural stochastic structures associated
with the sequence probn,� , n > 1 via a weak convergence in distribution; e.g. see Corollary 3.5 below.

Here we mention that in the strong disorder regime, i.e., � > 1, the measures µn,� do not have a non-
trivial limit. However, the �-finite measure n�3�/2 · µn,� has the weak limit µ1,� := I1/�(;) prob1,�

over the collection of sets �(v), v 2 T and µ1,�(�(v)) can be written as a scale mixture of 1/�-stable
random variables.

As a consequence of the explicit construction we can see that the limiting measures (prob1,� ,� > 1)
are defined on the same probability space and are mutually absolutely continuous on @T ⌦-a.s. By
the definition of the intervals (I(v))v2T, any infinite path s 2 {�1,+1}1 in the binary tree will be
represented by a point t(s) in the interval I(;). More specifically, with this notation, one has the
following immediate consequence.

Corollary 3.4. (prob1,� ,� > 1) are defined on the same probability space and are mutually absolutely
continuous with the Radon-Nikodym derivative of prob1,�1

with respect to prob1,�2
at the infinite path

s (with corresponding time point t(s)) given by

dprob1,�1

dprob1,�2

(s) =
C�1(t(s))I1/�2

(;)
C�2(t(s))I1/�1

(;) .

where the �-contribution for a single point t0 is given by

C�(t0) :=
X

(x,t)2N :t=t0

e��x
X

y2V
x,t

e��y.

Moreover, the sample paths of the (probability) measure-valued process � 7! prob1,� are a.s. continuous
for the total variation norm and, hence, weak-* topology, i.e., as �n ! � > 1 one has prob1,�

n

converges
weakly to prob1,�.

Proof. Observe that the Poisson process is independent of the intervals. The �-contribution for a single
point t0 is nonzero for countably infinitely many t’s and the support set for t0, projection of N on the
second co-ordinate, is independent of �. Continuity of the process � 7! prob1,� in the total variation
norm follows from the absolute continuity using Sche↵e’s theorem, and continuity of the respective
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Laplace transforms appearing in the Radon-Nikodym derivatives. This implies the asserted continuity
in the weak-* topology. ⌅

In fact, the random mapping � 7! probn,� , can be considered as a random process defined on (1,1)
and taking values in M({0, 1}1), the space of probability measures on {0, 1}1 endowed with the
weak* topology. The main result of this paper states that this sequence of processes converges weakly
to a limiting process � 7! prob1,� , in the finite-dimensional sense (see Definition 2.1 and 2.2).

It may be noted that similar formulae are known for other models of disorder, such as the random
energy model (REM), and generalized random energy model (GREM), introduced by [19, 29, 32] and
related by mean-field type formulations. It was shown by [9] as a consequence of [29] that the genealogy
of the GREM is given by the Bolthausen-Sznitman coalescent. It is interesting to note the manner
in which the asymptotic results for the multiplicative cascade model di↵er from those of GREM, yet
remain within the general framework of ⇤-coalescence (for non-uniform ⇤.) This is elaborated upon
with related comments are included at the close of this note.

Another specific by-product of Theorem 3.2 is that one can easily find the limiting distribution of
the genealogical tree of randomly chosen k vertices in {�1,+1}n from the distribution probn,� . Recall
that for v = (v1, v2, . . . , vn) 2 T and an integer k 6 n, we have v | k = (v1, v2, . . . , vk). Consider
the decorated Poisson process as given in equation 3.6. Let ⌫ be the (random) probability measure
supported on I(;) so that

⌫ 0�(t0) =
1

I1/�(;)
X

(x,t)2N :t=t0

e��x
X

y2V
x,t

e��y.

Let ⌫� be the probability measure on @T such that t(s) ⇠ ⌫ 0� when s ⇠ ⌫� . The following corollary
follows easily from Theorem 3.2.

Corollary 3.5. Let v1,v2, . . . ,vk be k many i.i.d. vertices from the probability measure probn,� on
{�1,+1}n. Let u1,u2, . . . ,uk be k many i.i.d. vertices from the probability measure ⌫�. Then for any
fixed integer k we have

(v1 | k,v2 | k, . . . ,vk | k) w�! (u1 | k,u2 | k, . . . ,uk | k)

as n ! 1.

This implies local convergence of the genealogical tree for randomly chosen k vertices from probn,�
near the root.

Finally let us record that a companion formulation of weak convergence in distribution can be given
in terms of Fourier transforms as follows.

Corollary 3.6. At any strong disorder � > 1, for each finite set F ✓ N

dprobn,�(F ) ) dprob1,�(F ) in distribution,

where dprobn,� , n > 1, dprob1,� denote their respective Fourier transforms as probabilities on the compact
abelian multiplicative group @T for the product topology.

Proof. The continuous characters of the group @T are given by �F (t) =
Q

j2F tj for finite sets F ✓ N.
In particular there are only countably many characters of @T . From standard Fourier analysis it follows
that we need only show that

lim
n!1

Eprob
n

�F = Eprob1 �F in distribution
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for each finite set F ✓ N. Let m = max{k : k 2 F}. Then for n > m,

Eprob
n,�

�F =

Z

@T
�F (s)

dprobn
d�

(s)�(ds)

=
X

|v|=m

Y

j2F
vj · Zn(�; ;)�1e��H(v)Zn(�; v)

=
X

|v|=m

Y

j2F
vj · e��H(v) · n

3�/2Zn(�; v)

n3�/2Zn(�; ;)
) Eprob1,�

�F

where the convergence is in distribution. ⌅

4. Proof of Main Result

In recent years there has been a rapidly growing literature on the asymptotics of the extremes of
branching random walks. Relatively long, technical papers have provided a refined understanding of
the behavior of the right (or left) most particles in branching random walks; e.g., [1, 8, 16, 23, 27].
This theory will be exploited to provide a coupled relation between the asymptotic distributions of
the partition functions, suitably scaled, for a general class of multiplicative cascades under strong
disorder and non-lattice energy distributions, as a function of the disorder parameter. In particular,
two essential structures underlying the results here are:

(a) Biggins-Kyprianou’s version of the derivative martingale; see [16] and [11], respectively, where
these ideas arise in connection with the extremes of branching random walks, and

(b) Brunet-Derrida’s notion of superposability.
The role of the derivative martingale was previously explained above. As noted, the construction

of the tree-indexed derivative field is an essential element of the a.s. construction of the weak limits
in distribution of the normalized cascade probabilities. Another is that of superposability of extremal
point processes introduced by [16], together with the (conjectured) corresponding representation as a
decorated Poisson (cluster) process, rigorously established by [27].

Specifically,

Definition 4.1. A point process N on R is said to be superposable if, for an independent copy N 0 and
any a, b 2 R such that e�a + e�b = 1,

TaN + TbN
0 d
= N,

where Tx

�P
y �y

�
=

P
y �y+x, x 2 R.

The basic example of a superposable point process is the Poisson process on R with intensity exdx.
This is the well-known point process of extremes of a centered and scaled i.i.d. Gaussian sequence.
More generally, a superposable point process is infinitely divisible and, therefore, it follows that it
must be a Poisson cluster point process. Based on analogous results for branching Brownian motion, it
had been conjectured in [16] that the only superposable point processes were Poisson cluster processes
with Poisson intensity ✓exdx, ✓ > 0. This was recently proven as a consequence of infinitely divisibility,
and also as a consequence of LePage representation theory, see [6, 28]. In the context of the present
note it may also be interesting to note that Poisson cluster processes must be associated in the sense
of positive dependence (or FKG inequalities); [17, 21].

Another conjecture by [16] was recently proven in [27] extending the above quoted result for
i.i.d. Gaussian exremes to the extremes of the energies Hn(s), |s| = n, centered and scaled. In par-
ticular, it is shown that in the boundary case the point process of extremes is superposable. More
specifically, in the notation of the present article,

Theorem 4.1 (Theorem 1.1 in [27]). Assume that the distribution of W satisfies the condition of
Theorem 3.2. Let Nn =

P
|s|=n �H(s)� 3

2 logn+logD1
. Then (Nn, Dn) converge jointly in distribution to

(N1, D1) where N1 =
P

k>1

P
y2V

k

�x
k

+y is a Poisson cluster point process on R with Poisson center
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process {xk : k > 1} having intensity ✓exdx, x 2 R for some ✓ > 0, Vk’s are i.i.d. copies of some point
process V and D1 is independent of N1.

An easy consequence of Theorem 4.1 (Theorem 2.4 in [27]) and the fact that

n
3
2�Zn(�) = D�

1
X

|s|=n

e��(H(s)� 3
2 logn+logD1) = D�

1

Z

R

e��zNn(dz),

is that for any fixed �1,�2, . . . ,�k 2 (1,1) we have
�
n3�

i

/2Zn(�i),i = 1, 2, . . . , k
�
=)

�
D�

i

1
X

k>1

e��
i

x
k

X

y2V
k

e��
i

y, i = 1, 2, . . . , k
�

(4.1)

where (xk, k > 1) are points of a Poisson point process with intensity ✓exdx, x 2 R, Vk’s are i.i.d. copies
of some point process V and D1 is the limiting derivative martingale independent of everything else.

Now let N be a Poisson point process in R⇥[0,1) with intensity measure exdtdx, (x, t) 2 R⇥[0,1).
It is easy to see that for a finite interval I ⇢ [0,1), the point process {x : (x, t) 2 N , t 2 I} is Poisson
point process with intensity |I|exdx, which has the same distribution as {xk � log |I|, k > 1} where
{xk : k > 1} is a Poisson point process with intensity exdx. Thus for an interval I of length ✓D1
independent of N , we have

✓X

k>1

e��
i

(x
k

�logD1)
X

y2V
k

e��
i

y, i = 1, 2, . . . , k

◆
d
=

✓ X

(x,t)2N :t2I

e��
i

x
X

y2V(x,t)

e��
i

y, i = 1, 2, . . . , k

◆

Now fix an integer k > 1 and consider the set of vertices v 2 T, |v| = k in the tree T at level k.
Consider the collection of random variables (n3�/2Zn(�; v), |v| = k) which clearly are i.i.d. and by the
above reasoning has the limit (in distribution)

✓ X

(x,t)2N :t/✓2I(v)

e��x
X

y2V(x,t)

e��y, |v| = k

◆

where I(v), |v| = k are mutually disjoint intervals of length ✓D1(v) and {D1(v), |v| = k} are
i.i.d. copies of D1. From here the proof of Theorem 3.2 follows easily. ⌅

The following revealing calculations are also direct consequences.

Corollary 4.2. Under conditions of the theorem,

lim
�!1

�(1� 1/�)�1n
3
2Zn(�)

1/� = n
3
2 e�min|s|=n

H(s)

and

lim
�!1

E(||{e�y, y 2 V }||�)
⇣
T (1/�)
✓D1

⌘1/� d
= E(max

y2V
y) ·D1 ·G

where � logG has Gumble extreme value distribution.

Proof. A consequence of Theorem 3.2 is that the limiting distribution of �(1�1/�)��n3�/2Zn(�) is the

same as a ↵�stable subordinator T (↵)
t stopped at an independent r.v. ✓D1E(||{e�y, y 2 V }||�), where

↵ = 1/�, and ||g(y), y 2 V ||� ,� > 1, denotes the usual L��norm,
� R
R e�y�V (dy)

� 1
� with respect to

the decorating points. ⌅
As a closing remark one may view the “genealogical structure” of the resulting a.s. defined strong

disorder cascade probability limit as follows: If vertices are chosen from the n-th level according to
the cascade measure in strong disorder, most of the branching occurs either within distance o(n) from
the root or within distance o(n) from the n-th level. The branching near the n-th level gives rise to
the decoration Point process in the limiting decorated Poisson process, whereas the Poisson process
arises out of the time spent without any branching; see [5,18] for comparison with branching Brownian
motion. Our result gives the structure near the root within distance O(1), as discussed earlier. See
Figure 4.1 for a graphical depiction.
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Initial Branching

Final Branching

giving the decoration

Figure 4.1. Geneological structure in Branching Random Walk

Another genealogical structure can be identified in terms of the Lèvy stable subordinator {T (↵)
s :

s > 0} by viewing it as a continuous state branching process (csbp), in a manner as was done in
[9] in describing the genealogy of Neveu’s csbp associated with another disordered system; namely,
Derrida’s generalized random energy model (GREM). In particular it was shown in ([9], Theorem
4) that the genealogy of Neveu’s csbp defines a Bolthausen-Sznitman coalescent (BSC). This could
be accomplished by exploiting an alternative cascade version of GREM, due to Ruelle in [32]. Now
observe that the (BSC) is a ⇤-coalescent for a uniform distribution ⇤ on [0, 1]; see [31]. So, in view

of recent results of [13], the genealogy of {T (↵)
s : s > 0} is that of a ⇤�coalescent for which ⇤ is a

Beta distribution with parameters �c/� and 1 � �c/�. Since �c/� < 1 under strict strong disorder,
the results here establish interesting points of contrast and comparison for these respective models of
disorder; also see [18] for other observations in this regard.
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