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Abstract

In 1997 Yves LeJan and Alain-Sol Sznitman provided a probabilistic gateway in the form
of a stochastic cascade model for the treatment of 3d incompressible, Navier-Stokes equations
in free space. The equations themselves are noteworthy for the inherent mathematical chal-
lenges that they pose to proving existence, uniqueness and regularity of solutions. The main
goal of the present article is to illustrate and explore the LeJan-Sznitman cascade in the context
of a simpler quasi-linear pde, namely the complex Burgers equation. In addition to providing
some unexpected results about these equations, consideration of mean-field models suggests
analysis of branching random walks having naturally imposed time delays.

1 Introduction

Throughout his career Chuck Newman has demonstrated mathematical insights that are remarkable
for both their depth and their wide ranging relevance to seemingly diverse areas of mathematics and
science. There are many things to admire about the way in which Chuck is able to resolve things
mathematically. The following story may be a lesser known example, but it is relevant to the topic
of this article, and is mainly being shared in admiring tribute to Chuck. During the early 1980’s
while still a professor at the University of Arizona, Chuck attended a colloquium talk on fluids
featuring a discussion of Burgers equation. As some of us were leaving the talk, Chuck shared a
scrap of paper in which he had doodled' a striking connection between Burgers equation for fluids
and one of his first loves, statistical physics. Specifically, in a matter of minutes, he had discovered
that the magnetization in a finite volume Curie-Weiss probability model is governed, as a function
of inverse temperature and external field, exactly by the same Burgers equation presented by the
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teristic function of the magnetization.”This would prove that central limit theorem.



speaker in a seemingly unrelated context of fluid flow. In addition to providing a rather unique
perspective on shocks in quasilinear pde’s in relation to spontaneous magnetization, Chuck had
quite cleverly provided new insights into a basic model of interest to mathematical physics and
probability; see [41]. In particular, early representations of solutions to the Burgers’ equation as
expected values in an interesting probability model can just as well be attributed to Chuck Newman.

Proposition 1.1 (Newman,1986). Let m = m,(h, 8) = ES; where {S; : i = 1,...,n} has the
joint distribution 7~ exp[g Yo Jijsis; + > hisi| [ p(ds;) with Ji; = J/2n,(J > 0),h; = h for
all i, j and [ exp(Ks*)p(ds) < oo for all K > 0. Then

om  J &*m d
om/0p = Jm% + CIETRR m(h,0) = %ln/ehsp(ds).

As remarked in [41], in the usual spin-1/2 Ising models the measure p is given by p(ds) =
[0(s — 1) + 6(s + 1)]2, and the resulting initial condition is m(h,0) = tanh(h). The classic
space-time Burgers equation results by defining t = 8J, x = —h and v = 1/n. Considerations
of complex h arise naturally in ([41], Theorem 6), see also [39,42], in connection with Chuck’s
take on the zeros of the partition function and the Riemann hypothesis. As will be seen, the
complexification of Burgers suggested by the LJS-cascade is in the initial data and solutions, rather
than their spatial domain.

The (unforced) three-dimensional incompressible Navier-Stokes equations governing fluid ve-
locity v(z,t) = (vi(z,t),vo(x,t), v3(x, t)) and (scalar) pressure p(z,t), in free space v € R3, ¢ >
0, are given for initial data vy and viscosity parameter v > 0, by a system of quasi-linear partial
differential equations
% +v-Vo=vAv—Vp, V-v=0 o(x,07)=uv(x), 2R} t>0. (1.1)
The equation V - v = 0 defines the incompressibility condition. The nonlinear term v - Vv is the
result of representing the flow in a Lagrangian coordinate system; i.e., % +v-Vu is the acceleration
in a frame following a moving particle and, as such, mathematically intrinsic to the equations.

Like the Riemann hypothesis, settling the question about the global existence of smooth solu-
tions for smooth initial data ranks among the millennial problems for mathematics. The following
is the precise Clay prize formulation of a positive resolution provided by Charles Fefferman [19]

Navier-Stokes Milennial Problem (MP): For divergence-free vy € S of rapid decay, show that
there exists p, v € C*®(R? x [0, 00)) satisfying (1.1), and the finite energy condition that, for some
¢ >0,

/ lv(z,t)*de < C, Vt > 0.
R3

It may be noted that uniqueness is implicit in this formulation of the problem. Also an alternative
formulation posed on the torus with periodic boundary conditions can be made in place of the free
space formulation. Of course a negative formulation is also possible. Since Fourier transform is
a homeomorphism on the Schwarz space S, an equivalent condition follows accordingly for the
initial data.

The goal of the present article is to illustrate and explore a probabilistic gateway to three-
dimensional incompressible Navier-Stokes equations (1.1) in Fourier space discovered by Yves
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Le Jan and Alain-Sol Sznitman [36], hereafter referred to as the LJS-cascade, but in the context
of stochastic cascades derived from the ostensibly simpler complex Burgers equation, and related
mean-field cascades to be defined. This will also give an opportunity to provide some contrasting
remarks and/or related results for the case of (1.1) and the LJS-cascade.

As will be seen, two modifications of the original LJS-cascade are made throughout this paper:
(1) to permit the phenomena of stochastic explosion in cascades where it may naturally happen in
unforced equations, and (ii) to exploit time-space self-similarity representation of solutions to (1.1)
via a modification of the stochastic cascade. The modified cascade will continue to be referred to
as the LJS-cascade.

The organization of this paper is as follows. The main features of a mild formulation of (1.1)
based on the LJS-cascade is provided in the next section as motivating background. A few other
notable probabilistic approaches to (1.1) are also cited to provide a slightly broader perspective on
(1.1), but the primary focus here is the nature of the LJS-cascade in a simpler context of a complex
Burgers equation; one may also consult [52] for a survey. As in the case of (1.1), the LJS-cascade
dictates a certain probabilistically natural choice for the function spaces in which the Burgers equa-
tion can be effectively analyzed. In particular, one is naturally led to Hardy space formulations as
defined by functions whose Fourier transform vanish for negative Fourier frequencies and suitably
decays for large positive frequencies. For contrast and comparison, the LJS-cascade associated
with (1.1) leads naturally to certain Besov-type solution spaces; e.g., see [4,36]. In any case, once
this determination is made, the associated LLJS-cascade may be broadly viewed in terms of a time-
delayed? branching random walk. More specifically, two essential features of the LJS-cascade are
(a) the Yule process, viewed as a binary tree-indexed family of i.i.d. mean one exponential random
variables, and (b) a corresponding branching random walk in Fourier frequency space.

The LJS-cascade for Burgers leads to the introduction of new related probability models in
the forms of a mean-field Burgers model, a 3-field Burgers model, and an a-delayed Yule process
given in the next two sections. A key feature of the LLJS-cascade in general is a certain conservation
of spatial Fourier frequencies in the corresponding branching random walk. This conservation
property persists spatially in the mean-field Burgers model, for which 8 = %, however is not
reflected in the other [(-field models. A two-parameter generalization would accommodate the
conservation property, however it will not be considered in the present paper beyond a few remarks.

The class of -field Burgers models conserves temporal frequencies in the case § = % Due to
the difference in scaling of spatial frequencies of a branching random walk and the corresponding
scaling of times between movements, one is thus naturally led to a companion purely temporal
a-delayed Yule process whose connection to the 3-field models can be explicitly expressed via as-
sociated Markov semigroups. Temporal frequency conservation is significant among the a-delayed
Yule processes and led to the recent discovery that the Poisson process may be realized as an -
delayed Yule process when av = % [14]. From a purely probabilistic perspective, this and related
results in [14] may be viewed as a variant on an old discovery in [35] identifying the Poisson
process as a random time change of a Yule process. It is also noteworthy that o = % is a critical
value for the a-delayed Yule processes when viewed in terms of boundedness of their infinitesimal
generators if and only if o < % In particular this includes o = 3% = }l of the mean-field cascade.

Following the brief introduction of these various models, we conclude the paper with a capstone

2The mean-field models for the Navier-Stokes equation, on the other hand, involve parameters 8 > 1 as well; see
[15] in this regard.



section devoted to the analysis of the four leading questions that prompted their consideration:
existence/uniqueness, well-posedness, regularity, and self-similarity. Although the probabilistic
framework is very close to familiar classic models, the perturbations to existing theory provide
interesting new challenges for the resolution of these problems.

2 A Brief Highlight of Probabilistic Approaches to Navier-Stokes
Equations and the LJS-Cascade

Let us first agree on the signs and normalizations in the Fourier transform to be used throughout.
Namely, for integrable functions and/or tempered distributions, suitably interpreted,

A~

f(6) = (2m)°% / ST @), EER"

Two noteworthy observations about (1.1) can be made in terms of Fourier transforms, denoted
by A:

V.-v=0 correspondsto & -0 =0

and
Vp corresponds to  pE.

As a result of incompressibility, the pressure term p(, ¢) may be removed while retaining the
velocity 0(&,t) by a Leray projection of the (Fourier transformed) equation (1.1) in the direction
orthogonal to £. As a result of this, the Fourier transformation of multiplication to convolution,
and the multiplier effect of the Fourier transform of the Laplacian term, the LJS-cascade emerges
naturally as a natural stochastic structure associated with the integrated equations, i.e., a mild form
of (1.1). This formulation was generalized in [4], and also developed in [6,48] from a perspective
of harmonic analysis.

Remark 2.1. The modification (i) of the original LJS-cascade noted above essentially involves the
representation of the forcing term. Specifically, in the original LJS-cascade, the unforced equations
would be viewed as equations forced by zero, whereas we elect to view the lack of forcing as simply
ignorable. This latter view leads to considerations of explosive branching that are not an issue for
the original formulation in [36], since a finite explosion time® means that there will be infinitely
many branchings within a finite time.

To recover p from the projected velocity one notes that, again owing to the incompressibility
condition, the divergence of the linear terms in (1.1) is zero. Thus, taking the divergence followed
by the Fourier transform, one arrives at

ﬁ(€7 ) = Z Rj@j(gv )Rk@k(ga ')a
7.k

3 An unfortunate typo occurs in the Appendix to [13] in which the explosion event should be denoted [¢ < oo, not

¢ = o],



where }?j f& = _I% f (€) is the Fourier symbol expresses the j-th Riesz transform R; convolved
with f. In particular,
p= Z R; Ry (vjug).
Jk

The Gundy-Varapoulos-Silverstein probabilistic representation of Riesz transforms in terms
of Brownian motion from infinity is noteworthy in this context. Although originally formulated
on a measure space of infinite measure, the construction has been modified in [3] to a measure
space with total probability one. To appreciate the role of incompressibility from a probabilistic
perspective, one may consider the linearized Stokes problem

0

a—;’:m, V-v=0, 2R3 ¢t>0. @2.1)
with arbitrary, not necessarily incompressible, initial data vy. In [50] the fundamental solution is
explicitly computed as

v(x,t) = / D(x — z,t)ve(2)dz, (2.2)
R3

where the semigroup I' = [I343 + R|(K), for the 3 x 3 identity matrix 343, matrix of Riesz
transforms R = ((R;Ry)), and Gaussian transition kernel K for standard Brownian motion. Of
course if vy is incompressible then the usual representation of solutions to the heat equation in
terms of Brownian motion is recovered. A stochastic calculus that would capture the effect of
incompressibility on Brownian motion remains an intriguing challenge.

Recently an alternative probabilistic approach to Navier-Stokes was developed by Constantin
and Iyer; [32], [33], [11]. Their idea is to use a Weber formula to express the velocity of the
inviscid equation in terms of the particle paths, being careful to avoid derivatives in time of the
particle paths. For given periodic, incompressible, 2+ 6-Holder continuous initial data v this leads
to an equivalent system for the inviscid equations Navier-Stokes equations, i.e., Euler equations,
of the form

X =
A= X!
v = P[(V"A)(upo A)]
X(a,0) = a, (2.3)

where P represents the Leray projection onto divergence free vector fields noted earlier, V' is the
transpose to the Jacobian, and A, is the spatial inverse map A;(X (t,a)) = a,a € RF(k = 2,3).
The key idea for the Constantin-Iyer formulation is reflected in their result that, upon replacing
the dynamics for the particle trajectories X in (2.3) by a stochastic differential equation dX =
vdt + V2v dW, the velocity field v = EP[(V"A)(ug 0 A)] is a fixed point of this modified
system if and only if v solves (1.1). In particular, if ¥ = 0 then this is the system(2.3) for Euler
equations. A noteworthy feature of this stochastic framework is that it accommodates domains
with boundary conditions beyond periodic [12], while the LJS-cascade theory is restricted to free
space and/or periodic boundary conditions by virtue of the Fourier transform.

Earlier probabilistic approaches to (1.1) were introduced in terms of the corresponding vorticity
(curl of velocity) equation in [10]; see [24] for a rigorous treatment. Finally, ergodic theory has also
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provided a natural framework in which (1.1) can be viewed as an infinite dimensional dynamical
system; [20-22,26,38,46,51].

Given the overall strengths and weaknesses of various probabilistic approaches to (1.1), we
wish to mention that some practical utility has been demonstrated with the LJS-cascade for com-
puting a convergence rate in a related context of the LANS-«a (Lagrange Averaged Navier-Stokes)
equations for fluids; a problem posed in [37]. These are essentially the Navier-Stokes equations on
a torus except that the spatial scales that are in some sense “smaller than ’are strategically filtered
for computational purposes at high Reynolds number. Denoting the solution to LANS-a by v(®),
the LJS-cascade may be used to show in suitable function spaces that for 7" > 0,

T
/ [ (- 8) = 6 (-, 1) | paaydt < A(T)ar
0

for a suitable constant A(T") > 0; see [9]. To our knowledge the LJS-cascade has been the only
approach to yield a rate in three dimensions, however [7] has subsequently been successful on the
two-dimensional problem using more standard pde methods and estimates. In addition to this, the
use of LJS-cascades as a numerical Monte Carlo tool has been tested on Burgers equation in [44].

3 Complex Burgers & the LJS-Cascade

The (unforced) viscous Burgers equation is given in free space by

ot " or ~ Von 3.1)
v(z,0) = vo(x)

where v(z, t) represents the 1-dimensional velocity at time ¢ > 0 at position = € R, vg(x) repre-
sents the initial velocity, and v > 1 is the viscosity parameter.
The equation above has the following natural symmetry:

If v(t, z) is a solution to Burgers equation, then vy (¢, ) := Av(A\%t, Ax), for A > 0, is also
a solution corresponding to the initial velocity (vg)y = Avg(Ax).

The quantities that are invariant under the above scaling are called scaling-critical or self-
similar. In particular, a solution to (3.1) is called self-similar if v(t,z) = v\ (¢, x) for all ¢ and
x. Of course a self-similar solution would arise from a self-similar initial data v9 = (vg),, and
therefore self-similar solutions must be viewed in a function space setting that accommodates this
scaling. In Fourier terms this may be expressed in integrated (mild) form as

t 00
1) = (e + ¢ / 0 [og -yt dyds. 32)

The scaling-symmetry can thusly be expressed in Fourier terms as:

If 9(&,t) is a solution to (3.2), 0x(&, ) := 9(E/A, A%t), for A > 0, is also a solution corre-
sponding to the initial velocity (0g)x = 0o(§/A).
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Consequently self-similar solutions in Fourier space satisfy ©(&,t) = 05(¢,t) = 0(£/A\, M%), In
particular this means that self-similar initial data must be piece-wise constant functions of the form:

1, §> 07

Bo(8) = { (3.3)

Ca, £<O

This means that in order to accommodate the self-similar case, one must consider settings that
include initial data in L*° in Fourier space.

For the LJS-cascade we seek to represent the mild formulation (3.2) in terms of expected values
of products of initial data along paths of an evolving random binary tree. The exponential density in
t is evident, and the space integral naturally occurs as an expected value under the above-mentioned
idea of self-similarity if we set 99(§) = 0 for £ < 0 (co = 0 in (3.3)). For then v(§,¢) = 0 for all
¢ < 0andt > 0, and the mild formulation (3.2) becomes

2 ¢ . 1 ¢
(&, t) = D(&)e ™t + / vE2e vt TE/ o, t—7)0(E—n, t—T7)dndr, £ >0,t>0.
0 0

i
2/ 27y

(3.4)
Note that the convolution integral in the above formulation is an integral with respect to a prob-
ability distribution concentrated on {(71,72) € (0,&) x (0,€) : m1 + n2 = £} having uniformly
distributed marginals on (0, §), respectively. These can, in turn, be rescaled in terms of uniform
distributions on (0, 1). The linear relation between Fourier frequencies (or wave numbers) is re-
ferred to as (spatial) conservation of frequencies. Of course the implied asymmetry of the Fourier
transform necessitates consideration of complex-valued solutions v.

The natural function space settings that is associated with (3.4) is that of a Hardy-type space

Hoo={ve€D'(R:C): 9(&) =0foré < 0,9 € L>([0,00),C))} (3.5)

Also, we set
lv]|#., =Inf{M >0: [0(§)] < M ae. >0} (3.6)

Remark 3.1. In fact, one can show that the real self-similar solutions to (3.1) must be of the form

a. x> 0;
v(z,t) = { o £ <0 (3.7)

where ¢, ¢y € {0,—2}. Therefore, to obtain a nontrivial LJS-cascade theory that includes the
self-similar case, one must consider complex-valued solutions v.

Note that upon rescaling £ by \%5 and multiplying the equation by ﬁ; i.e., a dilation-
rotation in the complex plane, the factor \/%w of the integral term is removed and v = 1 in (3.4)
so transformed. Therefore, to simplify the notation we will adopt the following convention for the

rest of the paper.

From here out, unless otherwise stated, we rescale and assume the
convention for a rotation-dilation of the complex plane to both ren-
derv = 1, and to remove the factor \/2?”. For notational simplicity,

we continue to denote the transformed function by 0.

Convention:

©)
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Using this Convention, (3.4) becomes

t 3
B(E, 1) = Do(€)e ¢ +/ 526_£2T%/ o(n,t —7)0(€ —n,t —7)dndr, £>0,t>0. (3.8)
0 0

This is the mild formulation of the Fourier transformed complex Burgers equation that will be of
main focus in this paper. In addition, related “mean field”’equations will also be introduced in due
course.
The LJS-cascade corresponding to (3.8), to be referred to as the Burgers cascade, consists of
(1) a Yule process
Y ={Ts:se€T=U2,{1,2}"} (3.9)

defined by a collection of i.i.d. mean one exponentially distributed random variables 7T indexed by
vertices s of the full binary tree T = U°_{1,2}™,{1,2}° = {6} (ii) a multiplicative branching
random walk starting from & # 0, recursively defined by

Wo(&) =&, W(&) =UWym-1(§), seT,|s|=m>1, (3.10)

where {(Us1,Us2) @ s € T} is a collection of i.i.d. random vectors, independent of Y, having
uniformly distributed marginals on (0, 1), and satisfying the conservation of frequency constraint

Uy +Us=1, seT. (.11)
Here we use |0 = 0, |s| = |(s1,-..,S,)| = n to denote the generation of s € T, and for |s| > n,
s|0=46,s|j = (s1,...,5j),7 > 1, denotes s € T restricted to the first j generations. In the special

case £ = 1 we will simply write W in place of W (1).
The following stochastic processes defining the cascade genealogy are convenient for the anal-
ysis of the Burgers cascade.

Definition 3.1. The genealogy of the complex Burgers cascade is the set-valued branching stochas-
tic process

5|1 s
Vinie(§,1) = {s € T: > W Ty <&t <Y W Ty} € €, (3.12)
§=0 §=0

where E is the space of evolutionary sets V- C T inductively defined by V- = {0} and, for #V > 2,
V =W\sU{sl, s2} for some W € E, #W = #V —1,s € W, where # A denotes the cardinality
of a set A. The number of cascade leaves at time t is denoted

Nunif(gat) = #Vunif(£7 t)? t Z 075 > 0. (313)

The (stochastic) explosion time for the complex Burgers cascade is the non-negative extended real-

valued random variable
n

(= 111520 g‘li% WsTfTs\j- (3.14)

The event that explosion occurs is defined by [( < 00].

Note that the state space & of evolutionary sets is a denumerable set, and V,,,,is(€, ) may be
viewed as a random binary subtree of T rooted at 6.
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t=0
W, 2T,
W1 = U1W9 W2 = U2W9
W Ty Wy 2Ty
W21 W22
Wll = U11W1 W12 = U12W1
W121 Wl22
t

Remark 3.2. This is essentially the LJS-cascade modified for the absence of forcing and applied
to Burgers equation. If the explosion time is finite then the number of branchings within a finite
time horizon will be infinite. In such cases the recursive definition below (3.15) of the cascade
must also be modified. In the case of (1.1), one makes the orthogonal projection noted earlier to
remove the pressure term prior to taking Fourier transforms. The convolution term remains as an
integral over R3 with a variety of normalizations (majorizations) available, see [4, 36], to obtain
an integral with respect to a probability distribution of conserved wave number pairs. This latter
flexibility provides alternative function spaces for solutions.

Based on the LJS-cascade described above, a “stochastic solution” may be expressed iteratively
as:

. ~ - @0( )7 T@ =
Xt = [ #W() —{ XOW(E), t — TH) XOWo(€)),t —Tp), Ty <t,

SE€EVaunif (Evt)

(3.15)
where X" X(?) are independent copies of X .
The LJS-cascade solution to (3.8) is obtained from the stochastic solution (3.15) via
061 =EX(E ) =E [ a0(Wo). (3.16)

SEVunif

Clearly, if the expected value above is well-defined, then the LJS-cascade solution (3.16) solves
(3.9).

In Section 6 we will consider the existence of the expected value in (3.16) as well as the
following basic questions driving the problems, conjectures and partial results pertaining to (3.8)
and related models.



(Q1) Existence/Uniqueness of Mild Solutions: A probabilistic rendering of (3.8) naturally sug-
gests analysis in a Hardy-type space H .. The questions of existence and uniqueness may be
analyzed globally in time for a subset of initial data, or locally in time for all initial data.

(Q2) Global Well-Posedness (frequency asymptotic): This question pertains to the identifica-
tion of linear subspaces of H . for which mild solutions exist for all time and remain in the
subspace. Regularity and/or self-similarity considerations, i.e., O3, Q4, may impose specific
conditions on solution spaces for Q1 and Q2.

(Q3) Regularity: The positive form of this question involves the C* behavior of solutions for all
time for smooth (Schwarz space) initial data. This question includes finite time unbounded
growth of the Fourier transform.

(Q4) Self-Similarity: The positive form of this question involves the uniqueness of solutions under
conditions of unique space/time scale-invariant solutions. The absence of such uniqueness
defines a notion of symmetry breaking. The solution space is naturally required to contain
constants since these provide self-similar solutions.

We will see that (Q1) can be answered in the affirmative. In particular, for Burgers equation
and the related LJS-cascade we will prove the following basic result (see Theorem 6.1).

Theorem 3.1. For & # 0, with probability one
e No Stochastic Explosion: ( = .
e oco-Radius of Convergence: sup{r > 1:ErVE) < 00} =00, t>0.

Moreover, for vy € Hoo

o) =E [ @), ¢>0,t>0,

S€Viunir (gvt)
is the unique mild solution to (3.8).

On the other hand (Q2) and (Q3) are delicate even in this substantially reduced framework
of complex Burgers. Their resolution can take interesting twists and turns, suggesting still further
questions about the nature of quasilinear equations and their companion delayed branching random
walks.

4 Mean-field Burgers & (-field Burgers

The mean-field Burgers model is defined under Convention C by replacing U by the constant
b =EU = % in the LJS-cascade for complex Burgers (3.8) defined in the previous section. More
generally, the S-field Burgers model is defined by replacing U by a specified constant 5 € [0, 1]
for spatial frequencies, i.e., W (£) = BI*I¢ defines the (multiplicative) branching random walk.
As a result W,(€)? is replaced by W,(£)? = 21¢2 € [0,1],s € T, when scaling the temporal
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frequencies. To keep the notation simple, we let the context indicate the meaning of W, continuing
to suppress £ when ¢ = 1. Now define

Is|—1 Is|—1

Vs t)={s€T: Y B 9T, <€t <) 89T} t20. (4.1)
=0 =0
Then the explosion time is accordingly replaced by

(g = lim manﬁ 2 ITy;5- 4.2)

n—0o0 |s|=

The mean-field Burgers cascade is the [5-field Burgers cascade with § = 1/2. Observe that
the [-field Burgers cascade has the associated mild equation obtained by replacing the uniform
distribution by the Dirac distribution d sy

t
0(&,) = Do(E)e™ " + / Ee TR (BE t —T)dr, 0,120, 43)
0
The corresponding pde associated with the mild 5-field cascade is given by
ov(E,t . . N A
Q0D — _e2a(e. 1)+ €02(86,1), 1> 0, 0(,0) = in(e). (4.4

Remark 4.1. Although it will not be considered beyond the mean-field Burgers cascade in this pa-
per, it is also natural to consider a two-parameter mixed (1, 52)-field cascade where 0 < (1, fs <
1, and 3, 4+ P2 = 1, corresponding to the equation

He) =@+ [ EtTaBE - e~ )i €40, 120, @9
In cases of the two extremes 8 = 0 and 3 = 1, one has the following explicit solutions:

B=0: b, 1) = e (&) + (1 — e EH02(0), ¢ >0, (4.6)

and, noting for the Yule process that N; = #V;(¢,t) has a geometric distribution with parameter
P = et or simply solving (4.4) in the case § =1,

Go(£)e ¢
T 1 00(6) + Bo(€)e e

B=1: D(&,t) = Eog(&)#NE0- 0 <t<te(to(§)), 47

respectively, where

L ln( A&()&jl)? for 9(¢) > 1
00, for —oo < (¢) < 1.

too(00()) = { (4.8)

In particular, while the solution in the case 8 = 0 preserves the structure of the initial data over
all time, in the case 5 = 1 there is finite-time blow-up for any initial data with 9y(§) > 1. In fact,
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if 0o(§) = M > 1,€ > 0 is constant then ¢ instantaneously exits H, i.e., infe~ too(00(€)) = 0,
making the problem ill-posed in H,. Even if v = M1j,,, M > 1, is compactly supported on
0 < a < b < oo, there is finite time blow-up at

In M
too(Ug) = Inf too (D S —
(UO) égo (UO(g)) hl(M _ 1)
The mean field value 5 = % is of particular interest, but as shown in the next section, the parameter
B = \/Li also results in distinguished structure.

S5 «a-Delayed Yule Process

The a-delayed Yule process is defined by the (-field Burgers cascade under Convention C with
a = (2,& = 1. With this reduction in parameters, for a € (0, 1], the a-delayed Yule process is
simply denoted

The mean-field model corresponds to o =

< % The Yule process is then obtained in this context
when o = 1 > 1. The parameter value o =

5 % may be viewed as a critical value of the -field
evolutions as explained below. Moreover, as also shown in [14] the %—delayed Yule process is the
(shifted) Poisson process with unit intensity; in fact, this extends to a two-parameter delayed Yule
process provided a;; + a = 1.

Give & the discrete topology and let Cy(€) denote the space of (continuous) real-valued func-
tions f : £ — R that vanish at infinity; i.e., given € > 0, one has |f(V')| < e for all but finitely
many V € &, with the uniform norm || - ||,. The subspace Cpo(E) C Cy(E) of functions with
compact (finite) support is clearly dense in Cy(€) for the uniform norm.

Since for each 0 < a < 1, (5.1) defines a Markov process* V (), one has corresponding
semigroups of positive linear contractions {Tt(o‘) :t > 0} defined by

V) = Va(e.), (B=Va, £=1), t=0. SR
1
4

TV (V) =Ev f(V(t), t>0,f € Col&), (5.2)

with the usual branching process convention that given V(@ (0) = V € &, V(®)(t) is the union of
those progeny at time ¢ independently produced by single progenitors at each node s € V.

The connection with the S-field model under Convention C and for suitable 0y may be ex-
pressed in terms of the semigroups as

2
(&) = T35, @ (b0, € B;-)(0), (5.3)
where, for real 0y and Convention C, ¢(0,&, f;-) : € — R is given by
p(00, 6, 8;V) = [ tolIsl°¢), Ve€. (5.4)
seV

The usual considerations imply that the infinitesimal generator (A, D,) of V() is given on
Coo(g ) via

ADF(V) =Y ol (V) = f(V)}, f € Cu(€), (5.5)

seV

4 Another closely related Markov evolution that takes place in the sequence space ¢; is given in [14].
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where
Vi=V\{stu{<sl,s2>}, seV.

Proposition 5.1. The space Cyo(E) of continuous functions on € having compact (finite) support
is a core for the generator of the semigroup defined by (5.2). In particular one has

9
ot

Proof. Note that f € Cyo(€) if and only if there are W1, ..., W, in £, and real numbers f1, ..., fu,
such that f = > | f;01w;y. Thus, if #V > 41V, then

T (V) = AT f(V) = T A F(V), >0, f€Da D Cool).

L5y = 3 PV () = WV (0) = V) = 0

In particular, Tt(a) f € Coo(E). Since Cyo(E) is dense in Cy(E), the assertion follows from standard
semigroup theory. [

The following result from [14] displays a distinct role of o = % as a critical parameter in terms
of boundedness of the infinitesimal generators.

Proposition 5.2. (A, D,), D, C Cy(€) is a bounded linear operator if and only if « < 1. In

particular, the infinitesimal generator is a bounded operator for the mean-field parameter o = .

W~

Other interesting values of a € (0, 1) arise by consideration of
m@(t) = EN©@(¢).

Proposition 5.3. For 0 < a <1,

co n—1
) tm
EN@(t) =1+ ] - Do 20, (5.6)
n=1 j=0 ’

In particular, t — EN®)(t) is a polynomial in t of degree k for any o that is a k-th root of % for
some k =1,2,....

Proof. One may readily observe, e.g, by conditioning on 7y, that

dm/(®)
dt

= —m (1) 4+ 2m ) (at), m(0) = 1. (5.7)

From here one may either derive the asserted formula by series expansion, or check the assertion
directly. The polynomial solutions are made obvious by inspection. 0

Remark 5.1. The positive functions

as(V) =Y B, Vvee, (5.8)

seV

13



provide a class of genealogical gauges on evolutionary sets. In particular, under the convention
0° =1, ag(V) = 63 (V), and a, (V) = #£V,V € &. Although ag ¢ Co(€) for any 3 € (0,1], the
following formal calculation for o € (0, 1],

Aag(V) = (28 — Daag(V), V €E,
leads to a class of positive martingales associated with the Yule process given by
M(t) =@ Vigs(VW(2)), t>0,

which is shown in [14] to be uniformly integrable if and only if 5 < ., where 3. ~ 0.1867 is the
unique solution in (0, 1] to

ﬁclnﬁc - Bc — 1.
The associated semigroup equations become available by the following. Define a sequence a, "’ €
Coo(€) by restricting the positive support of ag to E™ = {V € £ : #V < n}, forn =1,2...,
respectively. Then, one has £ = U2 € (”), EW & ... and

(n)

AN (V) = (28 = Daag(V), VeV n=23, ...

6 Basic Problems for Complex Burgers & Mean-field Burgers:
Some results and conjectures

We will start with several general results about probabilistic properties of LJS-cascades for Burgers
and (-field Burgers equations. In the subsequent subsections we will use these results to analyze
well-posedness and regularity issues for the solutions to the corresponding PDE.

As a matter of notation, the evolution sets V, (&, t) as well as generic functionals, e.g, No(&, 1),
will be denoted without specific subscripts: i.e., V' will be used for either Vi or Vs and similarly,
N(&,t) = #V (&, t) will stand for either Nyy,¢ or Np, as dictated by context.

First, we note that the tree structures of the corresponding LJS-cascades are independent on the
initial data in (3.8) or (4.3), and thus must preserve the scaling-invariance (£,t) — (A71€, \%t). As
a result, the following self-similarity and monotonicity properties are straightforward to prove and
are useful in some of the general analysis:

VIANTIEN) =V I(E ) =V ()

NN = NED = N A0 T=ER 6D

Self — Similarity :

Definition 6.1. For evolutionary sets W,V € £ we say V precedes W, denoted V< W, if each
s € V has a (possibly empty) concatenation belonging to W, i.e., for each s € V either s € W or
thereisan's € {1,2}™, for some m > 1, such that s xs € W.

It is staight-forward to check that

Ve < ve@), 0<ay<ar <1, &t >0. (6.2)

Wﬁl)(gvt) = Wﬁz)(gat)7 0< 62 S 61 S 1a gat > 0. (63)
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V(7'1) =< V(Tz), 0<mn <. (6.4)
As a consequence one has the following.
Proposition 6.1. For a fixed T > 0, the following functionals are increasing in o = 3%
[s|—1 1

Ng = H (1) = #V5(r) and Hs(t) = HY(1) = max (=) Ty,
seV (@) (T) =0 «Q

The next property, specifically the non-explosion of the LJS-cascades, is crucial for the analysis
in the subsections to follow. The non-explosion becomes obvious if we compare Burgers and (-
field cascades to the Yule process.

Proposition 6.2. Let 7 = £%t, 3 € [0, 1]. Then
P(Ng(T) < 00) = P(Nyit(7) < 00) =1,
and consequently, Burgers and [3-Burgers cascades are non-exploding.

Proof. First, we note that P(N;(7) < oo) = 1 for the Yule process, (o« = [ = 1) since, as is well-
known and easily checked, N;(7) is distributed geometrically: P(Ny(7) =n) =e (1 —e 7)) !
and therefore,

9

P(Ny(1 < 00) = ZPM =1

Now observe that since for Burgers and B—ﬁeld trees, Ws(€) < & Nunie(7) < Ni(7) and Ng <
Ni(7) a.s., and s0 P(Nyyie(7) < 00) = P(Ng(7) < o0o) = 1. The non-explosion immediately
follows. [

The following estimate on the distribution of /N will be used in Subsection 6.1 to establish
finiteness of the expected value (3.16).

Proposition 6.3. Let 7 = £t and denote Py(7) := P(Nuut(7) = k), we have

k—1

—7/k T
Bm) s e =

Proof. The estimate (6.5) is proved by induction. For n = 1 we have Py (1) = P(Ty <t) = e .
Assume (6.5) holds for £ < n. Then, conditioning on the first branching,

ke N. (6.5)

/52 —€2€/Zpkyt—s 1 ((€ = )t — ) dy ds

1

n

:eT/Te /Zpk 20)Pos +((1 — n)20) dy do

0

220 (o) (1= )0y
/ /Ze )&—1). i

o J=0

We will use the following lemma.
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Lemma 6.1. Foranyn € [0,1], n € N, and k € {1,...n}, one has:

1 (1-n)? 11
< < B 6.6
ntl ok ik S Rk ©.6)
. . . 2 —n)2
Proof. The lemma follows by considering the extrema of the function ¢(n) = % + 7(;1’7_),6 on
n € [0,1]. L
Using (6.6) we obtain
T 1 1 n—1 ( 1)'
_r . n—1) 2 _\j N2 \n—1—j
Pra(r) <o [ty / T Y (L o)t dndo
0 0o J=

e T n+1\" o n -l n
< i [ —— d
_(n—l)!( n ) /e (n—|—10> (n—i—la)’
0

where we used * + (1 —n)?> < 1lonn € [0,1].
To further estimate the integral above we note that by the mean value theorem,

/eyy"1 dy < x_"ex (6.7)
/ n
forx > 0and n € N.
Thus, using the (6.7) with y = n%la, we obtain:
e’ (n + 1)” GHT) o, T
(n—1)! n n!
and so (6.5) holds for k = n + 1.

Pn+1 (T) <

In the case (3-field models one has the following bounds.

Proposition 6.4. Let 7 = %t and 0 < 8? = a < 1 and denote P,SO‘) (1) := P(Ng(7) = k). Then
for k > 2 we have:

—(28%)k 21 (2527)k—1 1
ply < & — 32 . '
k—1 1
pi/? —e =pB*=-. .
and
" (1 . e—(252—1)7>k_1 X
« —T — ;32 :
P (r)<e 7 — 1) : a=p*> 3 (6.10)
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Proof. The statements can be proved by induction analogously to (6.5). Note that in the [-field
case, we have for a = 32

T
n

PO () = e / 3" P (a0) P, (a0) do,
0 k=1

and so, for 3 = 1/+/2 the exponentials inside the integral disappear, leading to Poisson distribution
(6.9).
In the case 52 € (1/2,1] we use bound (1 — e~(#*~1DF%7) < (1 — ¢~ (28*~1)9) in the inductive
step.
O

Remark 6.1. We note that by Proposition 6.1 the tails of Nz become thinner as 5 — 0.
The next result will be relevant to establish lack of well-posedness in Hadamard sense.

Proposition 6.5. Let 7 = £*t, 3 € [0, 1]. Then, as T — o0

0, 0<r<l
ErN““‘f(T), ErNe(m) 1, r=1
00 r> 1.

Proof. We note that the numbers of nodes N,(7) ,* 0o as 7 — oo. Then the assertion follows
from the monotonicity in 7 of the sequence *(") by applying the monotone convergence theorem
for » > 1 and the dominated convergence theorem for 0 < r < 1. OJ

For the analysis of regularity, it is important to obtain estimates on L(&,t), and R(&,t) — left-
most and right-most (delayed) branching random walkers. In particular, the properties below will
prove sufficient to capture initial data in H ., with compact support in £ which will be analyzed in
Subsection 6.3.

Remark 6.2. A rather complete probabilistic analysis of branching random walks associated with
Yule processes (5 = 1) has been evolving in the probability literature over the past several decades.
The recent paper [45] is especially appropriate to the present setting in its focus on the heights,
fully saturated trees, and the saturation height; also see [1,5,8,17,25,27,34,43] for related results
of various types. However the corresponding problems for the Burgers cascade and/or the (-
field cascades involve temporal delays to the Yule structure that make the analysis of the relevant
functionals more challenging in cases other than 3 = 1.

In view of the results of the previous section on the a-delayed Yule process, the case a = %,

or = \/%, represents relatively tractable cases that will be considered in some detail. Since the
a-delayed Yule process, o = /3% contains the essential stochastic structure for applications to the
[-field equations, the focus is on the former.

Recall that from (6.9) in the case a = £, NG)(7) = #V @) (1) is a (shifted) Poisson process

1 e k>1,1=¢E%



Let

pi(7) = P(N(7) = 2", n¥) (1) = n)
denote the probability that an o« = [3%-tree originating at £ is “fully saturated” by time ¢, i.e., has
exactly n full generations (and 2" branches); the saturated tree height h is defined as the maximal
generation of the tree in which all nodes are present. Observe that for n > 1 the two subtrees

resulting from the first branching must also be saturated with n — 1 full generations, and therefore
we have

pe (€)= e "
(a) €t 5 / —€2(t—s) (a) (o 5 )] ds, n>1. (6.11)

The case a = 1/2 is amenable to exact calculations that will be useful in the analysis of
regularity of solutions of the S—field equation. The main result is

Proposition 6.6. Forn > 1, let

Qn = (—1> : (6.12)
=1 N Y
Then -
1 2, 2t B n
P (€)= ¢ (2) 3 (6.13)

Proof. The statement is clearly true for n = 1. Assuming it holds for n = k, we have from (6.11)

t
e = ¢ [ [P ds
0

t 2 2F-1 2
= §2/ e € (=) (e‘£25/2 (_f ;/Q> ik> ds
0

9k+1_9o §2
o —§2t 2k+1 1 2k+1_2d
o @ 9k+1 0

2k+1_9o

1 1
% 2,\2kH1 1 ok+1
= (W) s
B €_§2t 62?(/. 2k+1_1 1 2k+1
— _2k:+1 1 _ Qk% k
which is the statement for n = k£ + 1. OJ

Remark 6.3. In the context of binary tree searching, the constant @ = []7Z, (1 — 1/2) is intro-
duced.
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Since 1 < Q,, < 1/Q, and @Q,, is increasing in n, Q* = lim,,_,,, @, is well defined. Further-
more, according to WolframAlpha [53],

Q* = H <1 — _) ~ 1.55354. (6.14)
k=1

6.1 Existence/Uniqueness of Mild Solutions

In this section we will pose the following question for both complex Burgers and (-field Burgers
equations.

Remark 6.4. Within the rather large literature, e.g. [2,18,23,28-31,47,49], on uniqueness/non-
uniqueness to certain parabolic semi-linear equations associated with Markov branching pro-
cesses, the explosion time distribution (and its complement) are known to play a key role in demon-
strating non-uniqueness for initial data O (or 1, respectively). While the quasi-linear Burgers equa-
tion, and Navier-Stokes equations naturally involve semi-Markov branching processes in defining
their genealogy, the consequences of explosion, or its absence, are not obvious for general ini-
tial data. Even in the case of the mean-field models, where the genealogy is a Markov branching
process, the issues for general initial data are diverse; see [15].

Existence/Uniqueness in 7 ..: Does (3.1) and (4.4) have unique global in time mild solution for
any vg € Hoo?

We will give the detailed proofs for the case of Burgers equation, following Convention C.
The corresponding proofs for S-field equations generally proceed similarly, and we will provide
indications whenever necessary.

Existence of the solution to (3.8) and (4.3) hinges on finiteness of the expected value in (3.16),
while the uniqueness is the consequence of the non-explosion property of the LJS-cascades for
(complex) Burgers equation.

Proposition 6.7. The expected value in (3.16) for the stochastic solution X defined either on
Burgers or (3-field cascades for 5 € [0, 1) is finite, provided vo(§) € Hoo. Thus 0(&,t) provided by
(3.16) is a well-defined solution to (3.8) and (4.3) respectively.

Proof. Suppose ||vg||n., = M. Using (6.5) we can estimate.

(M7 __ -
EMNT < MZ ( k'T) e T < eMT < o, (6.15)
k=0 ’

Then |EX (£,1)] < E|X(£,t)] < EMNuwir€) < o0, The case of 3-field Burgers equation with
(% < 1/2 s treated similarly.
In the case 32 > 1/2 and M > 2/3? — 1, estimate (6.10) only gives local existence:

n—1
> M(1 — e~ (287=17) (282 — 1)Me™"
Ng(T) —T o
EMN() < Me E:( 21 = GF 1) — M = e (6.16)
k=0
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Clearly, EMN¢(™ < oo for 7 € [0, 7g], provided

1 | M
Y e ”<M—(2ﬁ2—1>)'
Let 02 1
00200(677—0): (6 - )

(282 — 1) — M(1 — e-@P-Dr)’

Clearly, since M > 2% — 1 we have Cj > 1.

Also note that w(7) = EMNs(") solves the self-similar form of the 3-field Burgers equation
(6.24) with wy = M on any interval containing zero where the expectation is finite.

The key observation is that we can use induction to extend w(7) to a solution of (6.24), defined
on the entire [0, c0). In fact any extension of the solution w(t) extension will satisfy:

To To
2

@)y )

OMCy \* 282 -1
262 — 1 2

w(t) <y, Me™ ™ = ( e’ 7, forall T e [ } ,neN, (6.17)

where 7, 1s defined by the following recursion:
2M oM N\ .
=Co,  mn=g—  ie = (5] O
o 0 Tn+1 262_1%7 L€ g (2,62—1> 0

Indeed, in the case n = 1, we already have w(t) < CoMe™™ for 7 € [0, 79]. Now, assuming
(6.17) holds for k < n, we have for o € [0,7/(8*)" "], B%c € [0,70/(8%)"], and since 7, is
increasing, w(ao) < v, Me 7. Thus, for 7 € [0, 79/(32)"+1]:

T T

w(t)=Me " +e 7 / eawg(ﬂgd) do < Me 7 |1+ M*yfl / e~ (2821 g
0 0
M%QL ., 2M . .
: <1+2ﬂ2—1>M6 S g M = e

Thus, (6.17) holds for all n.
As a consequence EM N5(T) does not blow up in finite “time” 7, and so for B2 >1 /2, as in the
other cases, EX3(¢, t) is a well-defined solution to (4.3).
O

Remark 6.5. The proof of Proposition 6.7 yields the following bounds on the growth rates for
EMN( M > 1as 7 — oo (see Theorem 6.5), and consequently on the solutions of the corre-
sponding equations with ||vg ||z, = M:

EMN™ <O (Me™M7) for complex Burgers or 3-field Burgers, 3% < (0,1/2),

and

In2

EMY() < O <(C.M)Tln(l/ B2>> ., for B-field Burgers, 32 € (1/2,1),

where ¢, is a constant that depends on the model, complex or [3-field Burgers.
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The uniqueness follows from the “martingale method” of Le Jan and Sznitman. Here it also
requires the added non-explosion property established in Proposition 6.2. The proof is presented
for sake of completeness.

Proposition 6.8. Let v(x,t) be the solution of (3.1) or (4.4) with B € [0, 1) (equivalently, (&, t) is
a solution of (3.8) or (4.3) ) with the initial data vq € H.. Then U is is given by (3.16).

Proof. Without loss of generality, suppose ©(,t) - a solution to (3.8), and X be the stochastic
solution defined by (3.15). We aim to show © = EX. For this purpose we define recursively the
following sequence: X (&,t) = 0(&,t); Given X, (&, t), define X,, | by

X (6 t) — @0(5)7 Ty >t
S X, (Wi (6),t — Tp) X,,(Wa(€),t —Ty), Ty <t
More explicitly,
n—1
Xo=| [ v T vWant=> 7o)
[s| <n ls|=n 7=0

5 € Vit 35 € Viie s = 8

By induction, it follows that
E(X,) =0, Vn € N.

Fix £, > 0. Denote

M = max{ max {|2o(n)[}, max {l6(s,s)[}},

0<s<t

and let X, be defined as in (3.15) but with 9, replaced with M. Note that since M < oo, by
Proposition 6.7, E(X /) < oo.
Now let
Ap = {s € Viir : |s] > n}.

ﬂAn:®7

neN

Then by the non-explosion,

and so by the dominated convergence theorem:

E(14,) — 0, asn — oo.

Observe that X, [4. = X|4c and by the dominated convergence theorem, E(2X,/)14,) — 0 as
n — oo. Therefore,

IE(X,) — E(X)| <E(2X))1a,) = 0 asn — oo.

Thus, E(X) = 0.
The (§-field equation may be treated analogously. [
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We collect the results above in the following theorem.

Theorem 6.1. Consider either Burgers equation or (-field Burgers equation with 3 € [0, 1) to-
gether with corresponding LJS-cascades. Then, for £ > 0, with probability one

e No Stochastic Explosion: ( = 0.

e oo-Radius of Convergence: sup{r > 1 :ErMEH < o0} =00, t>0.
Moreover, for any vo(€) € Hoo
0(&,t) =EX(, 1), §£>0,12>0,
is the unique solution to (3.8) or (4.3).

Proof. The non-explosion is the consequence of Proposition 6.2, while existence and uniqueness
are established in Propositions 6.7 and 6.8. The infinite radius of convergence for I pVunit(6:1)
follows from (6.15) with M = r. ]

6.2 Global Well-Posedness in H ...

As far as behavior at infinity, we will ask the following well-posedness question.

Well-posedness in #..: Suppose vy(z) € Hoo. If v denotes the solution to (3.1) or (4.4), will
v(x,t) € Hoo forallt > 07?

It turns to that the answer is negative.
Theorem 6.2. For either Burgers or [3-field Burgers with 3 € [0, 1) equations we have:

1. (Lack of well-posedness in H.) For any M > 1 there exist initial data vy with ||vo||3., > M,
namely,
0o(§) > M > 1, V¢ >0,

such that the corresponding solution v(&,t) of (3.8) satisfies

lim (&, t) = o0 vt > 0,

E—o00

i.e., Burgers equation (3.1) and [(-field Burgers equations (4.4) are not well-posed in H .,
even locally in time.

2. (Well-posedness in H, for small initial data). If ||vo||%., < 1, then for all t > 0, the solution
v(&,t) € Heo, Le. the corresponding equations are globally well-posed in the unit ball of
Hoo.

Proof. The theorem follows immediately from Proposition 6.5 once we observe that in the case
Do(€) > M > 1, | X (&,1)] > MNED_ while in the case ||vg||lx. < 1, |X(£,1)] < 1. O
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Remark 6.6. Note that for the self-similar initial data 9(£) = M > 1 the solution 6(&, t) = w(£?t)
satisfies

lim 9(§,1) =00 lim 9(¢,t) = oo.
Remark 6.7. For 5 = 1 the global existence and uniqueness holds if and only if |jvg||n, <
1. When ||vg|l3,, > 1 the solutions in general do not exist even locally in time. Therefore,
the corresponding [-field model is automatically ill-posed. Indeed, in this case (-field Burgers
becomes

dﬁi, D _ _eie,t) + 2%, 1),
and so 0
et — 0(§)

vo(§) — e~ (00(8) — 1)

Clearly, if, e.g. 99(§) > ¢ > 1, then for any ¢ > 0, v(, t) becomes infinite at a certain £ € [0, 00).

As will be shown in the next subsection, there is evidence that the lack of well-posedness in
Theorem 6.2 for big initial data cannot be eliminated even if one considers smaller subspaces of
Hoo- In fact, in the case § = 1/ /2 there exist mild solutions of (4.4) with compactly-supported
(in Fourier space) initial data that exit H ., in finite time.

6.3 Regularity

The analysis of regularity properties of the solution of the [-field model (4.3) can also be ap-
proached using the probabilistic representation of solutions given by

o =E| ] (8" (6.18)

seVa(£,t)

As already mentioned, for results pertaining to regularity of solutions, one may wish to consider
bounded initial data having compact support on the positive half-line. For this let us consider

0(€) = M1y, 0<a<b<oc. (6.19)

The particular case of 5 = 1/+/2 serves to illustrate the lack of regularity in the solution of the
corresponding (-field equation. Note that for the particular case that 0y(§) = M1 . the solution
is given by

0(&,t) = exp((M — 1) €)

This simple example shows thatif M/ < 1, the solution gains regularity, indicated by an exponential

decay in the Fourier domain but, that for M > 1, the solution leaves H, instantly. This lack of

well-posedness in the Hadamard sense is reminiscent of the behavior of solutions of the backward

heat equation that is manifested also even in the case of initial data that is of compact support.
The precise statement of this result is as follows.
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Proposition 6.9. Let 9(¢,t) be a solution of (4.3) with 3 = 1/+/2 and initial data 9o(£) = M1(,y).
Let Ty = 1/v*, T, = 1/a? and Q* be given in (6.14). Then, if M > ¢/Q*,

limsup0(£,t) = oo, for T) <t < T,.

£—o0
Proof. : The probabilistic representation of the solution of the S—field model provides a lower
bound that is fundamental to establishing the result. Fix ¢ € [T}, T,] and let £ = 1/+/t so that by
hypothesis, £ € [a, b].
Let &, = 2"/2€. Then
B(6ast) > pa(2"EH)M

where p,, is given by (6.13). Recalling the definition of (),, given in (6.12) one has

lim sup 0(&,, t) > lim (e’lMQn)Qn =00

n—00 n—00

since @, is an increasing sequence, and we are assuming that M Q*e~! > 1. [

We note that the vanishing of the Fourier transform in a neighborhood of the origin plays a
distinct role in this problem. Indeed, while the previous result shows that the solution leaves the
space H, in finite time, it does so for a finite time. To be precise,

Proposition 6.10. Let 0(&,t) be a solution of (4.3) with initial data 0o(§) = M1y and €
[0,1/V/2]. Then if a > 0, there exists T > 0 such that

limsup9(,t) = 0, Vt > Tj.

£—00
Proof. The result follows by estimating the solution of the mild equation (4.3) on intervals of the
form ¢ € [a/B%,a/B8"), k > 0 and noting that for fixed ¢, the vanishing of the initial data near

the origin imposes a limit on the number of branches that need to be consider.
For the particular initial data under consideration, (4.3) can be written as

t
B(E, 1) = e T M pseng + €2 / e € =952(8¢, 5) ds. (6.20)
0

Note that if £ € [0, a), the solution vanishes, and if £ € [a,a/f), 9(E,t) = Me €.
We consider first the case 3 < 1/1/2. By induction one can show that if a/" < & < a/B"+!
then

Tn
ot <M (1 - M) em B, (6.21)

where v, = 2" — 1. Clearly the inequality holds for n = 0. Assuming the inequality holds for
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n = k and considering a /B < ¢ < a/B""2, we obtain:

2 M27k+1 2 2
B(&t) < Me™' [ 1+ —om) TR Yo / e *W “(6e)’s ) ds

MVe+1 2)k+1)g
= e_§2t 1+ —52/6( —(28%) Sds
1—282)n
. 12

2 MVk+1 2\ k411 ¢£2
— Mt (1 ((1425) )at_l)
‘ ( T a2 (1 - 2aFe) \°

gl
< Me—{Qt(l ]\24;;;12%4& S(1-@BMNE _ g (1 ]\42B2> ket o (2B2)E+1en

9

and so (6.21) holds forn = k + 1.
To complete the proof for 5 < 1/+/2, note that for ¢ € [a/3", a/"") one has

M Yn 2 M 2" -1
0(&t) <M (1 — 252) exp ( (28%)" 5o > =M <1_—252) exp (—2"a’t)

L\ 2
M —a“t
:(1—2ﬁ2)<1_€252) .

. 1 M
Tﬁ = In (—1_252)

Me @t < 1—23°

With

one has fort > T 5 that

and the result follows since

2 2"
M —a“t
glggov(f t) < hm (1 —24%) (1 _6252> =0

The case of 3 = 1/+/2 is similar with (6.21) now replaced for (v/2)"a < & < (v/2)"*'a, by

2 MEH\™
D(€,t) < Me™¢! (1+ 251) (6.22)

where v, = 2" — 1 as before. The statement holds for n = 0. Assume it holds for n = k and
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consider a(v/2)F*! < ¢ < a(v/2)*+2. Then

O(&,t) < Me € | 14 Mg? / £% (6@/@23)2( (é/f )5 ) "
:Me_f2t 1+M€ /(1+M£2 ) ds

et (142 (g MENTT
29k + 1 2k 2y + 1

5 M2t Yk+1
gMe—ft(H 5) .

ka

and thus the inequality holds for n = k + 1.
To complete the proof in this case, note that for a(v/2)" < ¢ < a(v/2)"*! one has from (6.22)

n—-1

B(E,8) < Me 2"t (14 4Ma®t)” ™' < T
a

exp [—2" (a*t — In(1 + 4Ma*t))] .
Let a®T 12 be the positive solution of the equation s — In(1 + 4Ms) = 0. Then the result follows
since for t > Tl*/ VoL

lim 9(¢,¢) < lim exp [—2" (a*t — In(1 + 4]\/[@275))] =0

£—o0 n—00

6.4 Self-Similarity

We note that the existence/uniqueness and well-posedness in H., analysis of the LJS-cascades,
in both complex Burgers and [-field Burgers equations exploited the natural scaling (§,t) —
(€/X, \%t) in the crucial ways, most notably through the scaling-invariance of V, and N, in Propo-
sitions 6.2, 6.7, and 6.5. Clearly, self-similar solutions is this settings are the unique solutions that
arise from the self-similar initial data 0y(§) = 00(£/)), i.e. from constant . Thus, self-similar
solutions present the limit-case scenarios for establishing existence (through the finiteness of the
expected values (3.16)), uniqueness (through the non-explosion of the LJS-cascades) as well as
lack of well-posedness (the most obvious ill-posed solutions are bounded below by self-similar
solutions).

Remark 6.8. In the case 9(&, t) is a self-similar solution, using the change of variables 7 = £t and
setting w(7) = v(&,t) = v(1,7) we obtain a self-similar form of the complex Burgers equation
(3.8):

w(T) = wee™ " / / (In*(r — o) w(|1 — n*(r — o)) dndo, (6.23)
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as well as a self-similar from of the $-field Burgers equations (4.3):

T

w(T) = wee T + /e“’wQ(ﬁ2(T —0))do. (6.24)
0

Note that for o = /3, the last equation is a mild formulation of the following non-local differential
equation:
u'(t) = —u(t) + u*(at). (6.25)

In [15] we refer to this equation as the a-Riccati equation and analyse it’s LIS-cascades in the case
a > 1.

This close connection between well-posedness of self-similar and general (non-symmetric)
solutions is more pronounced here than in the Navier-Stokes case treated in [13]. Viewed from the
prism of symmetry breaking question:

Symmetry Breaking: Does the existence and uniqueness, or even well-posedness, of self-similar
solutions differ from that of general non self-similar solutions in appropriate settings ?

For the Navier-Stokes case,’ lack of symmetry breaking appeared on the level of LJS-cascades,
which had the same finiteness and explosion properties for both self-similar and general formu-
lations. For the Burgers equation in H.,, Theorem 6.1 establishes that general solutions exhibit
exactly the same properties as self-similar ones in this regard, and so there is no symmetry break-
ing in Burgers (nor in S-field Burgers) equations. The following is a stronger and more intriguing
formulation of the question:

Symmetry and Regularity: Does well-posedness (or lack of it) of self-similar solutions in a nat-
ural scaling-invariant space mirror the persistence of regularity (or loss of it) for general
solutions?

As we have seen in the case of §-field Burgers equation for § = 1/ V2, the lack of well-
posedness in H, of self-similar solutions is correlated with a finite-time regularity loss for solu-
tions arising from the smoothest possible initial data, albeit compactly supported in Fourier space.
Thus it appears that, at least in this case, existence/uniqueness, well-posedness, and regularity
properties of mild solutions are mirrored by the existence/uniqueness and well-posedness proper-
ties of the self-similar solutions.
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>The explosion problem for the self-similar LJS-cascade has been resolved in [16], where it has been shown that
indeed explosion occurs.
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