N-Mixture Models with Application to Disease Surveillance

Lisa Madsen ${ }^{1}$ Ben Brintz ${ }^{2}$ Claudio Fuentes ${ }^{1}$

${ }^{1}$ Oregon State University
${ }^{2}$ University of Utah
August 27, 2020

Estimating Population Size

Estimating Population Size

Outline

N-Mixture Model History
Royle's N-Mixture Model
Generalized N-Mixture Model
Asymptotic Approximation
Spatial N-Mixture Model
Example
Spatial Model
Simulations
Analysis of Chlamydia Data
Summary

Outline

N-Mixture Model History Royle's N-Mixture Model
Generalized N-Mixture Model Asymptotic Approximation

Spatial N-Mixture Model
Example
Spatial Model
Simulations
Analysis of Chlamydia Data
Summary

Royle (2004)

- R independent sites; T visits per site

Royle (2004)

- R independent sites; T visits per site
- Closed populations: N_{i} animals at ith site

Royle (2004)

- R independent sites; T visits per site
- Closed populations: N_{i} animals at $i t h$ site
- $n_{i t}$ animals independently detected with probability p at visit t to site i

Royle's N-Mixture Model

Royle (2004)

- R independent sites; T visits per site
- Closed populations: N_{i} animals at ith site
- $n_{i t}$ animals independently detected with probability p at visit t to site i

Then $n_{i t} \sim$ independent $\operatorname{Binomial}\left(N_{i}, p\right)$

Royle's N-Mixture Model

Royle (2004)

- R independent sites; T visits per site
- Closed populations: N_{i} animals at ith site
- $n_{i t}$ animals independently detected with probability p at visit t to site i

Then $n_{i t} \sim$ independent $\operatorname{Binomial}\left(N_{i}, p\right)$ and total abundance is $N=\sum_{i=1}^{R} N_{i}$.

Royle's N-Mixture Model

Royle (2004)

- R independent sites; T visits per site
- Closed populations: N_{i} animals at ith site
- $n_{i t}$ animals independently detected with probability p at visit t to site i

Then $n_{i t} \sim$ independent $\operatorname{Binomial}\left(N_{i}, p\right)$ and total abundance is $N=\sum_{i=1}^{R} N_{i}$.

Royle's N-Mixture Model

Prehistory

Carroll and Lombard (1985):

$$
n_{t} \mid N \sim \operatorname{iid} \operatorname{Binomial}(N, p)
$$

Royle's N-Mixture Model

Prehistory

Carroll and Lombard (1985):

$$
\begin{gathered}
n_{t} \mid N \sim \operatorname{iid} \operatorname{Binomial}(N, p) \\
\quad p \sim \operatorname{beta}(\alpha, \beta)
\end{gathered}
$$

Royle's N-Mixture Model

Prehistory

Carroll and Lombard (1985):

$$
\begin{gathered}
n_{t} \mid N \sim \operatorname{iid} \operatorname{Binomial}(N, p) \\
\quad p \sim \operatorname{beta}(\alpha, \beta)
\end{gathered}
$$

Form joint likelihood $f\left(n_{1}, \ldots, n_{T} \mid N, p\right) \cdot f(p \mid \alpha, \beta)$, then integrate out p and maximize with respect to N, α and β.

Royle's N-Mixture Model

Prehistory

Carroll and Lombard (1985):

$$
\begin{gathered}
n_{t} \mid N \sim \operatorname{iid} \operatorname{Binomial}(N, p) \\
\quad p \sim \operatorname{beta}(\alpha, \beta)
\end{gathered}
$$

Form joint likelihood $f\left(n_{1}, \ldots, n_{T} \mid N, p\right) \cdot f(p \mid \alpha, \beta)$, then integrate out p and maximize with respect to N, α and β.

Estimator doesn't perform well for small p or small N.

Royle's N-Mixture Model

Model and Likelihood

$n_{i t} \mid N_{i} \sim \operatorname{Binomial}\left(N_{i}, p\right)$

Model and Likelihood

$$
\begin{aligned}
& n_{i t} \mid N_{i} \\
& N_{i} \sim \operatorname{Bin} \operatorname{iid} \operatorname{Poisial}\left(N_{i}, p\right) \\
& \text { and }(\lambda)
\end{aligned}
$$

Royle's N-Mixture Model

Model and Likelihood

$$
\begin{aligned}
& n_{i t} \mid N_{i} \\
& N_{i} \sim \operatorname{Bin} \operatorname{iid} \operatorname{Poisial}\left(N_{i}, p\right) \\
& \text { and }(\lambda)
\end{aligned}
$$

Joint likelihood:

$$
L\left(\left\{N_{i}\right\}, p, \lambda \mid\left\{n_{i t}\right\}\right)=\prod_{i=1}^{R}\left\{\left(\prod_{t=1}^{T} \operatorname{bin}\left(n_{i t} ; N_{i}, p\right)\right) \operatorname{pois}\left(N_{i} ; \lambda\right)\right\},
$$

where

$$
\begin{aligned}
\operatorname{bin}\left(n_{i t} ; N_{i}, p\right) & =\binom{N_{i}}{n_{i t}} p^{n_{i t}}(1-p)^{N_{i}-n_{i t}} \\
\operatorname{pois}\left(N_{i} ; \lambda\right) & =\frac{e^{-\lambda} \lambda^{N_{i}}}{N_{i}!}
\end{aligned}
$$

Royle's N-Mixture Model

Estimation

Integrated likelihood:
$L\left(p, \lambda \mid\left\{n_{i t}\right\}\right)=\prod_{i=1}^{R}\left\{\sum_{N_{i}=M_{i}}^{\infty}\left(\prod_{t=1}^{T} \operatorname{bin}\left(n_{i t} ; N_{i}, p\right)\right) \operatorname{pois}\left(N_{i} ; \lambda\right)\right\}$,
where $M_{i}=\max _{t}\left\{n_{i t}\right\}$.

Royle's N-Mixture Model

Estimation

Integrated likelihood:
$L\left(p, \lambda \mid\left\{n_{i t}\right\}\right)=\prod_{i=1}^{R}\left\{\sum_{N_{i}=M_{i}}^{\infty}\left(\prod_{t=1}^{T} \operatorname{bin}\left(n_{i t} ; N_{i}, p\right)\right) \operatorname{pois}\left(N_{i} ; \lambda\right)\right\}$,
where $M_{i}=\max _{t}\left\{n_{i t}\right\}$.
Maximize $\log (L)$ numerically with respect to p and λ.

Royle's N-Mixture Model

Estimation

Integrated likelihood:
$L\left(p, \lambda \mid\left\{n_{i t}\right\}\right)=\prod_{i=1}^{R}\left\{\sum_{N_{i}=M_{i}}^{K}\left(\prod_{t=1}^{T} \operatorname{bin}\left(n_{i t} ; N_{i}, p\right)\right) \operatorname{pois}\left(N_{i} ; \lambda\right)\right\}$,
where $M_{i}=\max _{t}\left\{n_{i t}\right\}$.
Maximize $\log (L)$ numerically with respect to p and λ.
$K \gg \max _{i t}\left\{n_{i t}\right\}$

Royle's N-Mixture Model

Estimation

Estimating total abundance $N=\sum_{i=1}^{R} N_{i}$:

Royle's N-Mixture Model

Estimation

Estimating total abundance $N=\sum_{i=1}^{R} N_{i}$:

$$
E\left(N_{i}\right)=\lambda
$$

Royle's N-Mixture Model

Estimation

Estimating total abundance $N=\sum_{i=1}^{R} N_{i}$:

$$
E\left(N_{i}\right)=\lambda \quad \therefore \widehat{N}=R \cdot \widehat{\lambda}
$$

Estimation

Estimating total abundance $N=\sum_{i=1}^{R} N_{i}$:

$$
\begin{aligned}
& E\left(N_{i}\right)=\lambda \quad \therefore \widehat{N}=R \cdot \widehat{\lambda} \\
& \text { and } \operatorname{SE}(\widehat{N})=R \cdot \operatorname{SE}(\widehat{\lambda})
\end{aligned}
$$

where $\operatorname{SE}(\hat{\lambda})$ is from the inverse Hessian evaluated at the MLE.

Outline

N-Mixture Model History Royle's N-Mixture Model
Generalized N-Mixture Model Asymptotic Approximation

Spatial N-Mixture Model
Example
Spatial Model
Simulations
Analysis of Chlamydia Data
Summary

Generalized N-Mixture Model

Open Populations

Site i
Visit 1

Visit 2

Visit 4

Generalized Setup

- R independent sites; T visits per site

Generalized Setup

- R independent sites; T visits per site
- Open populations: $N_{i t}$ animals at ith site on th visit

Generalized Setup

- R independent sites; T visits per site
- Open populations: $N_{i t}$ animals at ith site on th visit
- $n_{i t}$ animals independently detected with probability p at visit t to site i

Generalized Setup

- R independent sites; T visits per site
- Open populations: $N_{i t}$ animals at ith site on th visit
- $n_{i t}$ animals independently detected with probability p at visit t to site i

Then $n_{i t} \sim$ independent $\operatorname{Binomial}\left(N_{i t}, p\right)$

Generalized Setup

- R independent sites; T visits per site
- Open populations: $N_{i t}$ animals at ith site on th visit
- $n_{i t}$ animals independently detected with probability p at visit t to site i

Then $n_{i t} \sim$ independent $\operatorname{Binomial}\left(N_{i t}, p\right)$
Goal: Estimate abundance at time $t: N_{t} \equiv \sum_{i=1}^{R} N_{i t}$.

Model

Royle's model:

$$
\begin{aligned}
& n_{i t} \mid N_{i} \\
& N_{i} \sim \operatorname{iid} \operatorname{iinomial}\left(N_{i}, p\right) \\
& \text { Poisson }(\lambda)
\end{aligned}
$$

Model

Royle's model:

$$
\begin{aligned}
n_{i t} \mid N_{i} & \sim \operatorname{Binomial}\left(N_{i}, p\right) \\
N_{i} & \sim \operatorname{iid} \operatorname{Poisson}(\lambda)
\end{aligned}
$$

Generalized model:

$$
n_{i t} \mid N_{i t} \sim \operatorname{Binomial}\left(N_{i t}, p\right)
$$

Model

Royle's model:

$$
\begin{aligned}
& n_{i t} \mid N_{i} \\
& N_{i} \sim \operatorname{iid} \operatorname{iinomial}\left(N_{i}, p\right) \\
& \text { Poisson }(\lambda)
\end{aligned}
$$

Generalized model:

$$
\begin{aligned}
n_{i t} \mid N_{i t} & \sim \operatorname{Binomial}\left(N_{i t}, p\right) \\
f\left(N_{i 1}, \cdots, N_{i t} ; \boldsymbol{\theta}\right) & =f\left(N_{i 1} ; \theta\right) \prod_{t=2}^{T} f\left(N_{i t} \mid N_{i t-1} ; \theta\right)
\end{aligned}
$$

Model

Royle's model:

$$
\begin{aligned}
& n_{i t} \mid N_{i} \\
& N_{i} \sim \operatorname{Bin} \operatorname{iid} \operatorname{Poisial}\left(N_{i}, p\right) \\
& \text { and }(\lambda)
\end{aligned}
$$

Generalized model:

$$
\begin{aligned}
n_{i t} \mid N_{i t} & \sim \operatorname{Binomial}\left(N_{i t}, p\right) \\
f\left(N_{i 1}, \cdots, N_{i t} ; \boldsymbol{\theta}\right) & =f\left(N_{i 1} ; \theta\right) \prod_{t=2}^{T} f\left(N_{i t} \mid N_{i t-1} ; \boldsymbol{\theta}\right)
\end{aligned}
$$

where θ includes $\lambda=E\left(N_{i 1}\right)$ and parameters describing population dynamics.

Generalized Model Population Dynamics

$S_{i t}=$ survivors at site i from time $t-1$ to time t.

Generalized Model Population Dynamics

$S_{i t}=$ survivors at site i from time $t-1$ to time t.

$$
S_{i t} \mid N_{i t-1} \sim \operatorname{Binomial}\left(N_{i t-1}, \omega\right)
$$

Generalized Model Population Dynamics

$S_{i t}=$ survivors at site i from time $t-1$ to time t.

$$
S_{i t} \mid N_{i t-1} \sim \operatorname{Binomial}\left(N_{i t-1}, \omega\right)
$$

$G_{i t}=$ gains to site i from time $t-1$ to time t.

Generalized Model Population Dynamics

$S_{i t}=$ survivors at site i from time $t-1$ to time t.

$$
S_{i t} \mid N_{i t-1} \sim \operatorname{Binomial}\left(N_{i t-1}, \omega\right)
$$

$G_{i t}=$ gains to site i from time $t-1$ to time t.

$$
G_{i t} \mid N_{i t-1} \sim \operatorname{Poisson}(\gamma)
$$

Generalized Model Population Dynamics

$S_{i t}=$ survivors at site i from time $t-1$ to time t.

$$
S_{i t} \mid N_{i t-1} \sim \operatorname{Binomial}\left(N_{i t-1}, \omega\right)
$$

$G_{i t}=$ gains to site i from time $t-1$ to time t.

$$
G_{i t} \mid N_{i t-1} \sim \operatorname{Poisson}(\gamma)
$$

Population dynamics parameters:

Generalized Model Population Dynamics

$S_{i t}=$ survivors at site i from time $t-1$ to time t.

$$
S_{i t} \mid N_{i t-1} \sim \operatorname{Binomial}\left(N_{i t-1}, \omega\right)
$$

$G_{i t}=$ gains to site i from time $t-1$ to time t.

$$
G_{i t} \mid N_{i t-1} \sim \operatorname{Poisson}(\gamma)
$$

Population dynamics parameters:

Generalized N-Mixture Model

Joint Distribution of $N_{i 1}, \cdots, N_{i T}$

$N_{i 1} \sim \operatorname{Poisson}(\lambda)$

Generalized N-Mixture Model

Joint Distribution of $N_{i 1}, \cdots, N_{i T}$

$$
\begin{aligned}
N_{i 1} & \sim \text { Poisson }(\lambda) \\
N_{i t} \mid N_{i t-1} & =S_{i t}\left|N_{i t-1}+G_{i t}\right| N_{i t-1}, t>1
\end{aligned}
$$

Joint Distribution of $N_{i 1}, \cdots, N_{i T}$

$$
\begin{aligned}
N_{i 1} & \sim \operatorname{Poisson}(\lambda) \\
N_{i t} \mid N_{i t-1} & =S_{i t}\left|N_{i t-1}+G_{i t}\right| N_{i t-1}, t>1 \\
S_{i t} \mid N_{i t-1} & \sim \operatorname{Binomial}\left(N_{i t-1}, \omega\right) \\
G_{i t} \mid N_{i t-1} & \sim \operatorname{Poisson}(\gamma)
\end{aligned}
$$

$S_{i t}$ and $G_{i t}$ are conditionally independent given $N_{i t-1}$.

Likelihood

Royle's joint likelihood:

$$
L\left(\left\{N_{i}\right\}, p, \lambda \mid\left\{n_{i t}\right\}\right)=\prod_{i=1}^{R}\left\{\left(\prod_{t=1}^{T} \operatorname{bin}\left(n_{i t} ; N_{i}, p\right)\right) \operatorname{pois}\left(N_{i} ; \lambda\right)\right\},
$$

Likelihood

Royle's joint likelihood:

$$
L\left(\left\{N_{i}\right\}, p, \lambda \mid\left\{n_{i t}\right\}\right)=\prod_{i=1}^{R}\left\{\left(\prod_{t=1}^{T} \operatorname{bin}\left(n_{i t} ; N_{i}, p\right)\right) \operatorname{pois}\left(N_{i} ; \lambda\right)\right\},
$$

Generalized joint likelihood:

$$
L\left(\left\{N_{i t}\right\}, p, \boldsymbol{\theta} \mid\left\{n_{i t}\right\}\right)=\prod_{i=1}^{R}\left\{\left(\prod_{t=1}^{T} \operatorname{bin}\left(n_{i t} ; N_{i t}, p\right)\right) f\left(\left\{N_{i t}\right\} ; \boldsymbol{\theta}\right)\right\}
$$

Likelihood

Royle's joint likelihood:

$$
L\left(\left\{N_{i}\right\}, p, \lambda \mid\left\{n_{i t}\right\}\right)=\prod_{i=1}^{R}\left\{\left(\prod_{t=1}^{T} \operatorname{bin}\left(n_{i t} ; N_{i}, p\right)\right) \operatorname{pois}\left(N_{i} ; \lambda\right)\right\},
$$

Generalized joint likelihood:

$$
L\left(\left\{N_{i t}\right\}, p, \boldsymbol{\theta} \mid\left\{n_{i t}\right\}\right)=\prod_{i=1}^{R}\left\{\left(\prod_{t=1}^{T} \operatorname{bin}\left(n_{i t} ; N_{i t}, p\right)\right) f\left(\left\{N_{i t}\right\} ; \boldsymbol{\theta}\right)\right\}
$$

Generalized N-Mixture Model

Generalized Integrated Likelihood

$$
\begin{aligned}
& L\left(\left\{N_{i t}\right\}, p, \theta \mid\left\{n_{i t}\right\}\right)= \\
& \prod_{i=1}^{R}\left\{\sum_{N_{i=1}=n_{i}}^{\infty} \cdots \sum_{N_{T}=n_{T}}^{\infty}\left(\prod_{t=1}^{T} \operatorname{bin}\left(n_{i_{i} ;} ; N_{i t}, p\right)\right) f\left(\left\{N_{i t}\right\} ; \theta\right)\right\}
\end{aligned}
$$

Generalized N-Mixture Model

Generalized Integrated Likelihood

$$
\begin{aligned}
& L\left(\left\{N_{i t}\right\}, p, \boldsymbol{\theta} \mid\left\{n_{i t}\right\}\right)= \\
& \prod_{i=1}^{R}\left\{\sum_{N_{i}=n_{i}}^{K} \cdots \sum_{N_{T}=n_{i T}}^{K}\left(\prod_{t=1}^{T} \operatorname{bin}\left(n_{i t} ; N_{i t}, p\right)\right) f\left(\left\{N_{i t}\right\} ; \boldsymbol{\theta}\right)\right\} \\
& K \gg \max _{x_{i}}\left\{n_{i t}\right\}
\end{aligned}
$$

Generalized Integrated Likelihood

$$
\begin{aligned}
& L\left(\left\{N_{i t}\right\}, p, \theta \mid\left\{n_{i t}\right\}\right)= \\
& \prod_{i=1}^{R}\left\{\sum_{N_{i}=n_{i}}^{K} \cdots \sum_{N_{T}=n_{T}}^{K}\left(\prod_{t=1}^{T} \operatorname{bin}\left(n_{i t} ; N_{i t}, p\right)\right) f\left(\left\{N_{i t}\right\} ; \theta\right)\right\}
\end{aligned}
$$

$K \gg \max _{i t}\left\{n_{i t}\right\}$
Maximize $\log (L)$ numerically with respect to $p, \lambda, \omega, \gamma$,

Generalized Integrated Likelihood

$$
\begin{aligned}
& L\left(\left\{N_{i t}\right\}, p, \theta \mid\left\{n_{i t}\right\}\right)= \\
& \prod_{i=1}^{R}\left\{\sum_{N_{i}=n_{i}}^{K} \cdots \sum_{N_{T}=n_{T}}^{K}\left(\prod_{t=1}^{T} \operatorname{bin}\left(n_{i_{i} ;} ; N_{i t}, p\right)\right) f\left(\left\{N_{i t}\right\} ; \theta\right)\right\}
\end{aligned}
$$

$K \gg \max _{i t}\left\{n_{i t}\right\}$
Maximize $\log (L)$ numerically with respect to $p, \lambda, \omega, \gamma$, then estimate

$$
\begin{aligned}
\widehat{N}_{1} & =R \widehat{\lambda}^{\prime} \\
\widehat{N}_{t t} & =\widehat{\omega} \widehat{N}_{t-1}+R \widehat{\gamma}
\end{aligned}
$$

Generalized Integrated Likelihood

$$
\begin{aligned}
& L\left(\left\{N_{i t}\right\}, p, \theta \mid\left\{n_{i t}\right\}\right)= \\
& \prod_{i=1}^{R}\left\{\sum_{N_{i}=n_{i}}^{K} \cdots \sum_{N_{T}=n_{T}}^{K}\left(\prod_{t=1}^{T} \operatorname{bin}\left(n_{i t} ; N_{i t}, p\right)\right) f\left(\left\{N_{i t}\right\} ; \theta\right)\right\}
\end{aligned}
$$

$K \gg \max _{i t}\left\{n_{i t}\right\}$
Maximize $\log (L)$ numerically with respect to $p, \lambda, \omega, \gamma$, then estimate

$$
\begin{aligned}
\widehat{N}_{\cdot 1} & =R \widehat{\lambda} \\
\widehat{N}_{\cdot t} & =\widehat{\omega} \widehat{N}_{t-1}+R \widehat{\gamma}
\end{aligned}
$$

SEs from inverse Hessian evaluated at MLE and multivariate delta method or parametric bootstrap.

Identifiability

Are the parameters of the generalized model identifiable?

Identifiability

Are the parameters of the generalized model identifiable?
Can we distinguish
High survival and low recruitment from low survival and high recruitment?

Identifiability

Are the parameters of the generalized model identifiable?
Can we distinguish
High survival and low recruitment from low survival and high recruitment?
Low detection probability and high abundance from high detection probability and low abundance?

Generalized N-Mixture Model

Limitations of Generalized Model

Limitations of Generalized Model

- Potential near non-identifiability

Limitations of Generalized Model

- Potential near non-identifiability
- Approximating infinite sums

Outline

N-Mixture Model History
Royle's N-Mixture Model
Generalized N-Mixture Model
Asymptotic Approximation
Spatial N-Mixture Model
Example
Spatial Model
Simulations
Analysis of Chlamydia Data
Summary

Large Counts

Large Counts

The generalized model was

Large Counts

The generalized model was

$$
\begin{aligned}
n_{i t} \mid N_{i t} & \sim \operatorname{Binomial}\left(N_{i t}, p\right) \\
f\left(N_{i 1}, \cdots, N_{i T} ; \boldsymbol{\theta}\right) & =f\left(N_{i 1} ; \theta\right) \prod_{t=2}^{T} f\left(N_{i t} \mid N_{i t-1} ; \boldsymbol{\theta}\right)
\end{aligned}
$$

Asymptotic Approximation

Large Counts

The generalized model was

$$
\begin{aligned}
n_{i t} \mid N_{i t} & \sim \operatorname{Binomial}\left(N_{i t}, p\right) \\
f\left(N_{i 1}, \cdots, N_{i \tau} ; \boldsymbol{\theta}\right) & =f\left(N_{i t} ; \boldsymbol{\theta}\right) \prod_{t=2}^{T} f\left(N_{i t} \mid N_{i t-1} ; \boldsymbol{\theta}\right)
\end{aligned}
$$

If the $n_{i t}$ are large,

Large Counts

The generalized model was

$$
\begin{aligned}
n_{i t} \mid N_{i t} & \sim \operatorname{Binomial}\left(N_{i t}, p\right) \\
f\left(N_{i 1}, \cdots, N_{i T} ; \boldsymbol{\theta}\right) & =f\left(N_{i 1} ; \theta\right) \prod_{t=2}^{T} f\left(N_{i t} \mid N_{i t-1} ; \theta\right)
\end{aligned}
$$

If the $n_{i t}$ are large, then

$$
n_{i t} \stackrel{\text { approx }}{\sim} \operatorname{Normal}\left(\mu_{i t}, \sigma_{i t}^{2}\right),
$$

where $\mu_{i t}=E\left(n_{i t}\right)$ and $\sigma_{i t}^{2}=\operatorname{var}\left(n_{i t}\right)$.

Approximate Likelihood

Approximate the joint distribution as multivariate normal:

$$
\left[\begin{array}{lllll}
n_{11} & n_{12} & \ldots & n_{R T-1} & n_{R T}
\end{array}\right] \stackrel{]^{\text {apporx }}}{\sim} \operatorname{MVN}(\boldsymbol{\mu}, \boldsymbol{\Sigma}),
$$

where μ and Σ are given by the generalized model.

Calculating the Mean Vector

$$
\begin{aligned}
n_{i t} \mid N_{i t} & \sim \operatorname{Binomial}\left(N_{i t}, p\right) \\
N_{i 1} & \sim \operatorname{Poisson}(\lambda) \\
N_{i t} \mid N_{i t-1} & =S_{i t}\left|N_{i t-1}+G_{i t}\right| N_{i t-1}, \quad t>1 \\
S_{i t} \mid N_{i t-1} & \sim \operatorname{Binomial}\left(N_{i t-1}, \omega\right) \\
G_{i t} \mid N_{i t-1} & \sim \operatorname{Poisson}(\gamma)
\end{aligned}
$$

Calculating the Mean Vector

$$
\begin{aligned}
n_{i t} \mid N_{i t} & \sim \operatorname{Binomial}\left(N_{i t}, p\right) \\
N_{i 1} & \sim \operatorname{Poisson}(\lambda) \\
N_{i t} \mid N_{i t-1} & =S_{i t}\left|N_{i t-1}+G_{i t}\right| N_{i t-1}, \quad t>1 \\
S_{i t} \mid N_{i t-1} & \sim \operatorname{Binomial}\left(N_{i t-1}, \omega\right) \\
G_{i t} \mid N_{i t-1} & \sim \operatorname{Poisson}(\gamma)
\end{aligned}
$$

Then

Calculating the Mean Vector

$$
\begin{aligned}
n_{i t} \mid N_{i t} & \sim \operatorname{Binomial}\left(N_{i t}, p\right) \\
N_{i 1} & \sim \operatorname{Poisson}(\lambda) \\
N_{i t} \mid N_{i t-1} & =S_{i t}\left|N_{i t-1}+G_{i t}\right| N_{i t-1}, \quad t>1 \\
S_{i t} \mid N_{i t-1} & \sim \operatorname{Binomial}\left(N_{i t-1}, \omega\right) \\
G_{i t} \mid N_{i t-1} & \sim \operatorname{Poisson}(\gamma)
\end{aligned}
$$

Then

$$
\begin{aligned}
E\left(N_{i 1}\right) & =\lambda \\
E\left(N_{i t}\right) & =\omega E\left(N_{i t-1}\right)+\gamma, \quad t>1
\end{aligned}
$$

Calculating the Mean Vector

$$
\begin{aligned}
n_{i t} \mid N_{i t} & \sim \operatorname{Binomial}\left(N_{i t}, p\right) \\
N_{i 1} & \sim \operatorname{Poisson}(\lambda) \\
N_{i t} \mid N_{i t-1} & =S_{i t}\left|N_{i t-1}+G_{i t}\right| N_{i t-1}, \quad t>1 \\
S_{i t} \mid N_{i t-1} & \sim \operatorname{Binomial}\left(N_{i t-1}, \omega\right) \\
G_{i t} \mid N_{i t-1} & \sim \operatorname{Poisson}(\gamma)
\end{aligned}
$$

Then

$$
\begin{aligned}
E\left(N_{i 1}\right) & =\lambda \\
E\left(N_{i t}\right) & =\omega E\left(N_{i t-1}\right)+\gamma, \quad t>1 \\
E\left(n_{i t}\right) & =p E\left(N_{i t}\right)
\end{aligned}
$$

Calculating the Mean Vector

$$
\begin{aligned}
n_{i t} \mid N_{i t} & \sim \operatorname{Binomial}\left(N_{i t}, p\right) \\
N_{i 1} & \sim \operatorname{Poisson}(\lambda) \\
N_{i t} \mid N_{i t-1} & =S_{i t}\left|N_{i t-1}+G_{i t}\right| N_{i t-1}, \quad t>1 \\
S_{i t} \mid N_{i t-1} & \sim \operatorname{Binomial}\left(N_{i t-1}, \omega\right) \\
G_{i t} \mid N_{i t-1} & \sim \operatorname{Poisson}(\gamma)
\end{aligned}
$$

Then

$$
\begin{aligned}
E\left(N_{i 1}\right) & =\lambda \\
E\left(N_{i t}\right) & =\omega E\left(N_{i t-1}\right)+\gamma, \quad t>1 \\
E\left(n_{i t}\right) & =p E\left(N_{i t}\right)
\end{aligned}
$$

Calculate elements of Σ similarly.

Estimation

Maximize log of approximate likelihood

$$
L\left(p, \lambda, \omega, \gamma \mid\left\{n_{i t}\right\}\right)=\operatorname{MVN}\left(\left\{n_{i t}\right\} ; \boldsymbol{\mu}, \boldsymbol{\Sigma}\right)
$$

with respect to the parameters, then estimate N_{t} as before:

Estimation

Maximize log of approximate likelihood

$$
L\left(p, \lambda, \omega, \gamma \mid\left\{n_{i t}\right\}\right)=M V N\left(\left\{n_{i t}\right\} ; \boldsymbol{\mu}, \boldsymbol{\Sigma}\right)
$$

with respect to the parameters, then estimate N_{t} as before:

$$
\begin{aligned}
\widehat{N}_{1} & =R \widehat{\lambda} \\
\widehat{N}_{t t} & =\widehat{\omega} \widehat{N}_{t-1}+R \widehat{\gamma}
\end{aligned}
$$

Identifiability Diagnostic

The $\operatorname{MVN}(\boldsymbol{\mu}, \boldsymbol{\Sigma})$ model has a closed-form expression for $j k$ th element of the Fisher Information I:

Identifiability Diagnostic

The $\operatorname{MVN}(\boldsymbol{\mu}, \boldsymbol{\Sigma})$ model has a closed-form expression for $j k$ th element of the Fisher Information I:

$$
\boldsymbol{I}_{\boldsymbol{j} k}=\frac{\partial \boldsymbol{\mu}^{\prime}}{\partial \theta_{j}} \boldsymbol{\Sigma}^{-1} \frac{\partial \boldsymbol{\mu}}{\partial \theta_{k}}+\frac{1}{2} \operatorname{tr}\left(\boldsymbol{\Sigma}^{-1} \frac{\partial \boldsymbol{\Sigma}}{\partial \theta_{j}} \boldsymbol{\Sigma}^{-1} \frac{\partial \boldsymbol{\Sigma}}{\partial \theta_{k}}\right)
$$

Identifiability Diagnostic

The $\operatorname{MVN}(\boldsymbol{\mu}, \boldsymbol{\Sigma})$ model has a closed-form expression for $j k$ th element of the Fisher Information I:

$$
\boldsymbol{I}_{j k}=\frac{\partial \boldsymbol{\mu}^{\prime}}{\partial \theta_{j}} \boldsymbol{\Sigma}^{-1} \frac{\partial \boldsymbol{\mu}}{\partial \theta_{k}}+\frac{1}{2} \operatorname{tr}\left(\boldsymbol{\Sigma}^{-1} \frac{\partial \boldsymbol{\Sigma}}{\partial \theta_{j}} \boldsymbol{\Sigma}^{-1} \frac{\partial \boldsymbol{\Sigma}}{\partial \theta_{k}}\right)
$$

Use I to diagnose near-non-identifiability.

Identifiability Diagnostic

Example: $R=1, T=2, \lambda=100$, and $\gamma=90$
Minimum Eigenvalue of I

Example

Outline

N-Mixture Model History Royle's N-Mixture Mode Generalized N-Mixture Model Asymptotic Approximation

Spatial N-Mixture Model
Example
Spatial Model
Simulations
Analysis of Chlamydia Data
Summary

Example

Chlamydia in Oregon

Chlamydia in Oregon

Chlamydia is a common sexually-transmitted disease.

- Relatively easy to diagnose and cure

Chlamydia in Oregon

Chlamydia is a common sexually-transmitted disease.

- Relatively easy to diagnose and cure
- Symptoms may not occur for several weeks

Chlamydia in Oregon

Chlamydia is a common sexually-transmitted disease.

- Relatively easy to diagnose and cure
- Symptoms may not occur for several weeks
- Can cause permanent damage if left untreated

Chlamydia in Oregon

Chlamydia is a common sexually-transmitted disease.

- Relatively easy to diagnose and cure
- Symptoms may not occur for several weeks
- Can cause permanent damage if left untreated

Goal: Use N-Mixture model to estimate chlamydia case counts.

Oregon Population and Cases by County

County	Population			Observed Cases			
	2010	\ldots	2018	2010	\ldots	2018	
Multnomah	737,291	\ldots	811,880	3296	\ldots	5459	
Washington	531,645	\ldots	597,695	1390	\ldots	2404	
Clackamas	376,790	\ldots	416,075	945	\ldots	1394	
Lane	351,923	\ldots	379,611	1276	\ldots	1844	
Marion	315,951	\ldots	346,868	1395	\ldots	1887	
\vdots	\vdots		\vdots	\vdots		\vdots	
Grant	7464	\ldots	7176	14	\ldots	24	
Wallowa	7012	\ldots	7081	9	\ldots	9	
Gilliam	1882	\ldots	1894	3	\ldots	3	
Sherman	1779	\ldots	1708	4	\ldots	4	
Wheeler	1447	\ldots	1366	3	\ldots	3	

Chlamydia in Oregon

Oregon Counties 2016 Reported Prevalence

$\square \quad[0,0.0014)$ $\square \quad[0.0014,0.0029)$ $\square \quad[0.0029,0.0043)$ - [0.0043,0.0058)

■ [0.0058,0.0072]

Outline

N-Mixture Model History
Royle's N-Mixture Mode
Generalized N-Mixture Model Asymptotic Approximation

Spatial N-Mixture Model
Example
Spatial Model
Simulations Analysis of Chlamydia Data

Summary

Spatial Model

Notation and Terminology for Spatial Model

Spatial Model

Notation and Terminology for Spatial Model

$n_{i t}=$ observed case count in county i, year t
$N_{i t}=$ true case count in county i, year t

Spatial Model

Notation and Terminology for Spatial Model

$n_{i t}=$ observed case count in county i, year t
$N_{i t}=$ true case count in county i, year t
pop $_{i t}=$ population in county i, year t

Spatial Model

Notation and Terminology for Spatial Model

$n_{i t}=$ observed case count in county i, year t
$N_{i t}=$ true case count in county i, year t
pop $_{i t}=$ population in county i, year t
$N_{i t} /$ pop $_{i t}=$ prevalence

Notation and Terminology for Spatial Model

$n_{i t}=$ observed case count in county i, year t
$N_{i t}=$ true case count in county i, year t
pop $_{i t}=$ population in county i, year t
$N_{i t} /$ pop $_{i t}=$ prevalence

$$
\left\{N_{\alpha, \tau}\right\}=\left\{N_{i t}: i=1, \ldots, R \text { and } t=1, \ldots, \tau\right\}
$$

Notation and Terminology for Spatial Model

 $n_{i t}=$ observed case count in county i, year $t$$N_{i t}=$ true case count in county i, year t
pop $_{i t}=$ population in county i, year t
$N_{i t} /$ pop $_{i t}=$ prevalence

$$
\left\{N_{\alpha, \tau}\right\}=\left\{N_{i t}: i=1, \ldots, R \text { and } t=1, \ldots, \tau\right\}
$$

$R \times R$ adjacency matrix:

$$
A_{i j}= \begin{cases}1, & \text { county } j \text { borders county } i \text { or } i=j \\ 0, & \text { otherwise }\end{cases}
$$

Notation and Terminology for Spatial Model

$n_{i t}=$ observed case count in county i, year t
$N_{i t}=$ true case count in county i, year t
pop $_{\text {it }}=$ population in county i, year t
$N_{\text {it }} /$ pop $_{\text {it }}=$ prevalence

$$
\left\{N_{\alpha, \tau}\right\}=\left\{N_{i t}: i=1, \ldots, R \text { and } t=1, \ldots, \tau\right\}
$$

$R \times R$ adjacency matrix:

$$
A_{i j}= \begin{cases}1, & \text { county } j \text { borders county } i \text { or } i=j \\ 0, & \text { otherwise }\end{cases}
$$

Size of neighborhood of county i : $A_{i .}=\sum_{j=1}^{R} A_{i j}$.

Spatial Model

Spatial Model

$$
n_{i t} \mid N_{i t} \sim \operatorname{Binomial}\left(N_{i t}, p\right)
$$

Spatial Model

Spatial Model

$$
\begin{aligned}
n_{i t} \mid N_{i t} & \sim \operatorname{Binomial}\left(N_{i t}, p\right) \\
N_{i 1} & \sim \operatorname{Poisson}\left(\beta \cdot \operatorname{pop}_{i 1}\right)
\end{aligned}
$$

Spatial Model

Spatial Model

$$
\begin{aligned}
n_{i t} \mid N_{i t} & \sim \operatorname{Binomial}\left(N_{i t}, p\right) \\
N_{i 1} & \sim \operatorname{Poisson}\left(\beta \cdot \operatorname{pop}_{i 1}\right) \\
N_{i t} \mid N_{i t-1} & =S_{i t}\left|N_{i t-1}+G_{i t}\right| N_{i t-1}, \quad t>1
\end{aligned}
$$

Spatial Model

Spatial Model

$$
\begin{aligned}
n_{i t} \mid N_{i t} & \sim \operatorname{Binomial}\left(N_{i t}, p\right) \\
N_{i 1} & \sim \operatorname{Poisson}\left(\beta \cdot \operatorname{pop}_{i 1}\right) \\
N_{i t} \mid N_{i t-1} & =S_{i t}\left|N_{i t-1}+G_{i t}\right| N_{i t-1}, \quad t>1 \\
S_{i t} \mid N_{i t-1} & \sim \operatorname{Binomial}\left(N_{i t-1}, \omega\right)
\end{aligned}
$$

Spatial Model

Spatial Model

$$
\begin{aligned}
n_{i t} \mid N_{i t} & \sim \operatorname{Binomial}\left(N_{i t}, p\right) \\
N_{i 1} & \sim \operatorname{Poisson}\left(\beta \cdot \operatorname{pop}_{i 1}\right) \\
N_{i t} \mid N_{i t-1} & =S_{i t}\left|N_{i t-1}+G_{i t}\right| N_{i t-1}, \quad t>1 \\
S_{i t} \mid N_{i t-1} & \sim \operatorname{Binomial}\left(N_{i t-1}, \omega\right) \\
G_{i t} \mid\left\{N_{\alpha, t-1}\right\} & \sim \operatorname{Poisson}\left(\gamma \cdot \widetilde{N}_{i t-1}\right)
\end{aligned}
$$

where

$$
\widetilde{N}_{i t-1}=\operatorname{pop}_{i t-1} \cdot \sum_{r=1}^{R} \frac{A_{i r} N_{r t-1} / p o p_{r t-1}}{A_{i}}
$$

Spatial Model

Spatial Model

$$
\begin{aligned}
n_{i t} \mid N_{i t} & \sim \operatorname{Binomial}\left(N_{i t}, p\right) \\
N_{i 1} & \sim \operatorname{Poisson}\left(\beta \cdot \operatorname{pop}_{i 1}\right) \\
N_{i t} \mid N_{i t-1} & =S_{i t}\left|N_{i t-1}+G_{i t}\right| N_{i t-1}, \quad t>1 \\
S_{i t} \mid N_{i t-1} & \sim \operatorname{Binomial}\left(N_{i t-1}, \omega\right) \\
G_{i t} \mid\left\{N_{\alpha, t-1}\right\} & \sim \operatorname{Poisson}\left(\gamma \cdot \widetilde{N}_{i t-1}\right)
\end{aligned}
$$

where

$$
\widetilde{N}_{i t-1}=\operatorname{pop}_{i t-1} \cdot \sum_{r=1}^{R} \frac{A_{i} \widehat{N}_{r t-1} / p o p_{r t-1}}{A_{i}} .
$$

Spatial Model

$$
\begin{aligned}
n_{i t} \mid N_{i t} & \sim \operatorname{Binomial}\left(N_{i t}, p\right) \\
N_{i 1} & \sim \operatorname{Poisson}\left(\beta \cdot \operatorname{pop}_{i 1}\right) \\
N_{i t} \mid N_{i t-1} & =S_{i t}\left|N_{i t-1}+G_{i t}\right| N_{i t-1}, \quad t>1 \\
S_{i t} \mid N_{i t-1} & \sim \operatorname{Binomial}\left(N_{i t-1}, \omega\right) \\
G_{i t} \mid\left\{N_{\alpha, t-1}\right\} & \sim \operatorname{Poisson}\left(\gamma \cdot \widetilde{N}_{i t-1}\right)
\end{aligned}
$$

where

$$
\widetilde{N}_{i t-1}=\operatorname{pop}_{i t-1} \cdot \sum_{r=1}^{R} \frac{A_{i} \frac{N_{r t-1} / p o p_{r t-1}}{A_{i}} .}{} .
$$

$\widetilde{N}_{i t-1}$ is the population in county i at time $t-1$ times the average prevalence in its neighborhood.

Spatial Model

Interpreting Spatial Model Parameters

 $n_{i t} \mid N_{i t} \sim \operatorname{Binomial}\left(N_{i t}, p\right)$
Spatial Model

Interpreting Spatial Model Parameters

 $n_{i t} \mid N_{i t} \sim \operatorname{Binomial}\left(N_{i t}, p\right) \rightarrow \underset{p \text { is detection }}{ }$
Spatial Model

Interpreting Spatial Model Parameters

 $n_{i t} \mid N_{i t} \sim \operatorname{Binomial}\left(N_{i t}, p\right) \rightarrow \underset{p \text { is detection }}{ }$$N_{i 1} \sim \operatorname{Poisson}\left(\beta \cdot \operatorname{pop}_{i 1}\right)$

Spatial Model

Interpreting Spatial Model Parameters

 $n_{i t} \mid N_{i t} \sim \operatorname{Binomial}\left(N_{i t}, p\right) \rightarrow \underset{ }{p \text { is detection }}$$N_{i 1} \sim \operatorname{Poisson}\left(\beta \cdot \operatorname{pop}_{i 1}\right) \quad \rightarrow \quad \beta$ is expected initial prevalence

Spatial Model

Interpreting Spatial Model Parameters

$n_{i t} \mid N_{i t} \sim \operatorname{Binomial}\left(N_{i t}, p\right) \rightarrow p$ is detection probability

$N_{i 1} \sim \operatorname{Poisson}\left(\beta \cdot \operatorname{pop}_{i 1}\right) \quad \rightarrow \quad \beta$ is expected initial prevalence

$S_{i t} \mid N_{i t-1} \sim \operatorname{Binomial}\left(N_{i t-1}, \omega\right)$

Spatial Model

Interpreting Spatial Model Parameters

 $n_{i t} \mid N_{i t} \sim \operatorname{Binomial}\left(N_{i t}, p\right) \rightarrow \underset{\text { probability }}{p \text { is detection }}$$N_{i 1} \sim \operatorname{Poisson}\left(\beta \cdot \operatorname{pop}_{i 1}\right) \quad \rightarrow \quad \beta$ is expected initial prevalence
$S_{i t} \mid N_{i t-1} \sim \operatorname{Binomial}\left(N_{i t-1}, \omega\right) \quad \rightarrow \quad \omega$ is persistence rate

Interpreting Spatial Model Parameters

$n_{i t} \mid N_{i t} \sim \operatorname{Binomial}\left(N_{i t}, p\right) \rightarrow p$ is detection probability

$N_{i 1} \sim \operatorname{Poisson}\left(\beta \cdot \operatorname{pop}_{i 1}\right) \quad \rightarrow \quad \beta$ is expected initial prevalence

$S_{i t} \mid N_{i t-1} \sim \operatorname{Binomial}\left(N_{i t-1}, \omega\right) \quad \rightarrow \quad \omega$ is persistence rate

$$
G_{i t} \mid\left\{N_{\alpha, t-1}\right\} \sim \operatorname{Poisson}\left(\gamma \cdot \widetilde{N}_{i t-1}\right)
$$

Interpreting Spatial Model Parameters

$n_{i t} \mid N_{i t} \sim \operatorname{Binomial}\left(N_{i t}, p\right) \rightarrow p$ is detection probability

$$
N_{i 1} \sim \operatorname{Poisson}\left(\beta \cdot \operatorname{pop}_{i 1}\right) \rightarrow \quad \beta \text { is expected initial } \begin{aligned}
& \text { prevalence }
\end{aligned}
$$

$S_{i t} \mid N_{i t-1} \sim \operatorname{Binomial}\left(N_{i t-1}, \omega\right) \quad \rightarrow \quad \omega$ is persistence rate
$G_{i t} \mid\left\{N_{\alpha, t-1}\right\} \sim \operatorname{Poisson}\left(\gamma \cdot \widetilde{N}_{i t-1}\right) \quad \rightarrow \quad \gamma$ is infection rate

Spatial Model

Estimation

As with the non-spatial normal-approximation model,

- Write MVN $\boldsymbol{\mu}$ and $\boldsymbol{\Sigma}$ in terms of $\boldsymbol{\theta}=(\boldsymbol{p}, \beta, \omega, \gamma)$.
- Maximize log of approximate likelihood

$$
L\left(\boldsymbol{\theta} \mid\left\{n_{i t}\right\}\right)=\operatorname{MVN}\left(\left\{n_{i t}\right\} ; \boldsymbol{\mu}, \boldsymbol{\Sigma}\right)
$$

with respect to θ.

Estimation

As with the non-spatial normal-approximation model,

- Write MVN $\boldsymbol{\mu}$ and $\boldsymbol{\Sigma}$ in terms of $\boldsymbol{\theta}=(\boldsymbol{p}, \beta, \omega, \gamma)$.
- Maximize log of approximate likelihood

$$
L\left(\boldsymbol{\theta} \mid\left\{n_{i t}\right\}\right)=\operatorname{MVN}\left(\left\{n_{i t}\right\} ; \boldsymbol{\mu}, \boldsymbol{\Sigma}\right)
$$

with respect to θ.

- Estimate $N_{i t}$ sequentially:

$$
\begin{aligned}
& \widehat{N}_{i 1}=\widehat{\beta} \operatorname{pop}_{i 1} \\
& \widehat{N}_{i t}=\widehat{\omega} \widehat{N}_{i t-1}+\widehat{\gamma} \widehat{\tilde{N}}_{i t-1}
\end{aligned}
$$

Estimation

As with the non-spatial normal-approximation model,

- Write MVN $\boldsymbol{\mu}$ and $\boldsymbol{\Sigma}$ in terms of $\boldsymbol{\theta}=(\boldsymbol{p}, \beta, \omega, \gamma)$.
- Maximize log of approximate likelihood

$$
L\left(\boldsymbol{\theta} \mid\left\{n_{i t}\right\}\right)=\operatorname{MVN}\left(\left\{n_{i t}\right\} ; \boldsymbol{\mu}, \boldsymbol{\Sigma}\right)
$$

with respect to θ.

- Estimate $N_{i t}$ sequentially:

$$
\begin{aligned}
& \widehat{N}_{i 1}=\widehat{\beta} \operatorname{pop}_{i 1} \\
& \widehat{N}_{i t}=\widehat{\omega} \widehat{N}_{i t-1}+\widehat{\gamma} \widehat{\widetilde{N}}_{i t-1}
\end{aligned}
$$

- For each $t, \widehat{N}_{t}=\sum_{i=1}^{R} \widehat{N}_{i t}$.

Spatial Model

Confidence Intervals

Account for uncertainty in $\widehat{\boldsymbol{\theta}}$ with a parametric bootstrap:

- Given $\widehat{\boldsymbol{\theta}}$, calculate Fisher Information $\boldsymbol{I}(\widehat{\boldsymbol{\theta}})$.

Spatial Model

Confidence Intervals

Account for uncertainty in $\widehat{\boldsymbol{\theta}}$ with a parametric bootstrap:

- Given $\widehat{\boldsymbol{\theta}}$, calculate Fisher Information $\boldsymbol{I}(\widehat{\boldsymbol{\theta}})$.
- Simulate a large number S of bootstrap samples from $\operatorname{MVN}\left[\widehat{\boldsymbol{\theta}}, \boldsymbol{I}^{-1}(\widehat{\boldsymbol{\theta}})\right]$.

Spatial Model

Confidence Intervals

Account for uncertainty in $\widehat{\boldsymbol{\theta}}$ with a parametric bootstrap:

- Given $\widehat{\boldsymbol{\theta}}$, calculate Fisher Information $\boldsymbol{I}(\widehat{\boldsymbol{\theta}})$.
- Simulate a large number S of bootstrap samples from $\operatorname{MVN}\left[\widehat{\boldsymbol{\theta}}, \boldsymbol{I}^{-1}(\widehat{\boldsymbol{\theta}})\right]$.

Bootstrap sample $\widehat{\boldsymbol{\theta}}^{(1)}, \ldots, \widehat{\boldsymbol{\theta}}^{(S)}$ represents the sampling distribution of $\widehat{\boldsymbol{\theta}}$.

Spatial Model

Confidence Intervals

Similarly, account for the sampling variability in the $N_{i t}$.

Spatial Model

Confidence Intervals

Similarly, account for the sampling variability in the $N_{i t}$. Given $\widehat{\boldsymbol{\theta}}^{(s)}$, for each site i, generate $\widehat{N}_{i 1}^{(s)}, \ldots, \widehat{N}_{i T}^{(s)}$ according to the model:

$$
\widehat{N}_{i 1}^{(s)} \sim \operatorname{Poisson}\left(\widehat{\beta}^{(s)} \operatorname{pop}_{i 1}\right)
$$

Confidence Intervals

Similarly, account for the sampling variability in the $N_{i t}$. Given $\widehat{\boldsymbol{\theta}}^{(s)}$, for each site i, generate $\widehat{N}_{i 1}^{(s)}, \ldots, \widehat{N}_{i T}^{(s)}$ according to the model:

$$
\begin{aligned}
\widehat{N}_{i 1}^{(s)} & \sim \operatorname{Poisson}\left(\widehat{\beta}^{(s)} \operatorname{pop}_{i 1}\right) \\
\widehat{N}_{i t}^{(s)} \mid \widehat{N}_{i t-1}^{(s)} & =S_{i t}^{(s)}\left|\widehat{N}_{i t-1}^{(s)}+G_{i t}^{(s)}\right| \widehat{N}_{i t-1}^{(s)}, \quad t>1
\end{aligned}
$$

Confidence Intervals

Similarly, account for the sampling variability in the $N_{i t}$. Given $\widehat{\boldsymbol{\theta}}^{(s)}$, for each site i, generate $\widehat{N}_{i 1}^{(s)}, \ldots, \widehat{N}_{i T}^{(s)}$ according to the model:

$$
\begin{aligned}
\widehat{N}_{i t}^{(s)} & \sim \operatorname{Poisson}\left(\widehat{\beta}^{(s)} \operatorname{pop}_{i t}\right) \\
\widehat{N}_{i t}^{(s)} \mid \widehat{\mathcal{N}}_{i t-1}^{(s)} & =S_{i t}^{(s)}\left|\widehat{N}_{i t-1}^{(s)}+G_{i t}^{(s)}\right| \widehat{N}_{i t-1}^{(s)}, \quad t>1 \\
S_{i t}^{(s)} \mid \widehat{\mathcal{N}}_{i t-1}^{(s)} & \sim \operatorname{Binomial}\left(\widehat{N}_{i t-1}^{(s)} \widehat{\omega}^{(s)}\right) \\
G_{i t}^{(s)} \mid \widehat{N}_{\alpha, t-1}^{(s)} & \sim \operatorname{Poisson}\left(\widehat{\gamma}^{(s)} \cdot \widehat{\widetilde{N}}_{i t-1}^{(s)}\right)
\end{aligned}
$$

Spatial Model

Confidence Intervals

For $s=1, \ldots, S$ we have generated:

$$
\begin{array}{ccc}
\widehat{N}_{11}^{(s)} & , \ldots, & \widehat{N}_{1 T}^{(s)} \\
\vdots & & \vdots \\
\widehat{N}_{R 1}^{(s)} & , \ldots, & \widehat{N}_{R T}^{(s)}
\end{array}
$$

Spatial Model

Confidence Intervals

For $s=1, \ldots, S$ we have generated:

$$
\begin{array}{ccc}
\widehat{N}_{11}^{(s)} & , \ldots, & \widehat{N}_{1 T}^{(s)} \\
\vdots & & \vdots \\
\widehat{N}_{R 1}^{(s)} & , \ldots, & \widehat{N}_{R T}^{(s)}
\end{array}
$$

Then calculate $\widehat{N}_{t}^{(s)}=\sum_{i=1}^{R} \widehat{N}_{i t}^{(s)}$ to get $\widehat{N}_{t}^{(1)}, \ldots, \widehat{N}_{t}^{(S)}$.

Spatial Model

Confidence Intervals

For $s=1, \ldots, S$ we have generated:

$$
\begin{array}{ccc}
\widehat{N}_{11}^{(s)} & , \ldots, & \widehat{N}_{1 T}^{(s)} \\
\vdots & & \vdots \\
\widehat{N}_{R 1}^{(s)} & , \ldots, & \widehat{N}_{R T}^{(s)}
\end{array}
$$

Then calculate $\widehat{N}_{t}^{(s)}=\sum_{i=1}^{R} \widehat{N}_{i t}^{(s)}$ to get $\widehat{N}_{t}^{(1)}, \ldots, \widehat{N}_{t}^{(S)}$.
$1-\alpha$ confidence bounds for $N_{\text {. }}$ are the $\alpha / 2$ and $1-\alpha / 2$ quantiles of the bootstrapped distribution of $\widehat{N}_{. t}$.

Simulations

Outline

N-Mixture Model History Royle's N-Mixture Mode Generalized N-Mixture Model Asymptotic Approximation

Spatial N-Mixture Model
Example Spatial Model

Simulations

Analysis of Chlamydia Data

Summary

Scenarios

Using Oregon's populations and map, we ran 1000 simulations for each of 24 scenarios.

	Parameter	Values
β	initial expected prevalence	$0.005,0.05$
p	detection probability	$0.4,0.7,0.9$
ω	persistence rate	$0.5,0.8$
γ	infection rate	$0.3,0.6$

Simulations

Procedure

- Simulate data with $R=36, T=9$, Oregon populations, and A from Oregon map.

Procedure

- Simulate data with $R=36, T=9$, Oregon populations, and A from Oregon map.
- Estimate $\boldsymbol{p}, \beta, \omega, \gamma$.

Procedure

- Simulate data with $R=36, T=9$, Oregon populations, and A from Oregon map.
- Estimate $\boldsymbol{p}, \beta, \omega, \gamma$.
- Calculate $\widehat{N}_{1}, \ldots, \widehat{N}_{9}$ recursively using $\widehat{p}, \widehat{\beta}, \widehat{\omega}, \widehat{\gamma}$.

Procedure

- Simulate data with $R=36, T=9$, Oregon populations, and A from Oregon map.
- Estimate $\boldsymbol{p}, \beta, \omega, \gamma$.
- Calculate $\widehat{N}_{.1}, \ldots, \widehat{N}_{.9}$ recursively using $\widehat{p}, \widehat{\beta}, \widehat{\omega}, \widehat{\gamma}$.
- Record mean absolute relative error of \widehat{N}_{t} :

$$
\text { MRE }=\frac{1}{9} \sum_{t=1}^{9}\left|\widehat{N}_{\cdot t}-N_{\cdot t}\right| / N_{\cdot t} .
$$

Procedure

- Simulate data with $R=36, T=9$, Oregon populations, and A from Oregon map.
- Estimate $\boldsymbol{p}, \beta, \omega, \gamma$.
- Calculate $\widehat{N}_{.1}, \ldots, \widehat{N}_{.9}$ recursively using $\widehat{p}, \widehat{\beta}, \widehat{\omega}, \widehat{\gamma}$.
- Record mean absolute relative error of \widehat{N}_{t} :

$$
\text { MRE }=\frac{1}{9} \sum_{t=1}^{9}\left|\widehat{\mathcal{N}}_{\cdot t}-N_{\cdot t}\right| / N_{\cdot t} .
$$

- Perform parametric bootstrap to simulate sampling distribution of \widehat{N}_{9}.

Procedure

- Simulate data with $R=36, T=9$, Oregon populations, and A from Oregon map.
- Estimate $\boldsymbol{p}, \beta, \omega, \gamma$.
- Calculate $\widehat{N}_{.1}, \ldots, \widehat{N}_{.9}$ recursively using $\widehat{p}, \widehat{\beta}, \widehat{\omega}, \widehat{\gamma}$.
- Record mean absolute relative error of \widehat{N}_{t} :

$$
\text { MRE }=\frac{1}{9} \sum_{t=1}^{9}\left|\widehat{\mathcal{N}}_{\cdot t}-N_{\cdot t}\right| / N_{\cdot t} .
$$

- Perform parametric bootstrap to simulate sampling distribution of \widehat{N}_{9}.
- Record success/failure of 90% interval estimate.

Procedure

- Simulate data with $R=36, T=9$, Oregon populations, and A from Oregon map.
- Estimate $\boldsymbol{p}, \beta, \omega, \gamma$.
- Calculate $\widehat{N}_{.1}, \ldots, \widehat{N}_{.9}$ recursively using $\widehat{p}, \widehat{\beta}, \widehat{\omega}, \widehat{\gamma}$.
- Record mean absolute relative error of \widehat{N}_{t} :

$$
\mathrm{MRE}=\frac{1}{9} \sum_{t=1}^{9}\left|\widehat{\mathcal{N}}_{\cdot t}-N_{\cdot t}\right| / N_{\cdot t} .
$$

- Perform parametric bootstrap to simulate sampling distribution of $\widehat{N}_{.9}$.
- Record success/failure of 90% interval estimate.
- Record interval width.

Simulations

Results

Results

> Persistence
> - $\omega=0.5$
> - $\omega=0.8$
> Detection Probability

Results

Simulations

Results

Initial Prevalence $\beta=0.005$

Results

Initial Prevalence $\beta=0.05$

Robustness

Misspecified Model Fit

Robustness

Correct Model Fit

Analysis of Chlamydia Data

Outline

N-Mixture Model History Royle's N-Mixture Mode Generalized N-Mixture Model Asymptotic Approximation

Spatial N-Mixture Model
Example
Spatial Model
Simulations
Analysis of Chlamydia Data

Summary

Oregon Chlamydia Data 2010-2018

County	Population			Observed Cases		
	2010	\ldots	2018	2010	\ldots	2018
Multnomah	737,291	\ldots	811,880	3296	\ldots	5459
Washington	531,645	\ldots	597,695	1390	\ldots	2404
Clackamas	376,790	\ldots	416,075	945	\ldots	1394
Lane	351,923	\ldots	379,611	1276	\ldots	1844
Marion	315,951	\ldots	346,868	1395	\ldots	1887
\vdots	\vdots		\vdots	\vdots		\vdots
Grant	7464	\ldots	7176	14	\ldots	24
Wallowa	7012	\ldots	7081	9	\ldots	9
Gilliam	1882	\ldots	1894	3	\ldots	3
Sherman	1779	\ldots	1708	4	\ldots	4
Wheeler	1447	\ldots	1366	3	\ldots	3

Analysis of Chlamydia Data

Parameter Estimates (SEs)

Initial expected prevalence

$$
\begin{aligned}
& \widehat{\beta}=0.0053(0.0001) \\
& \widehat{p}=0.669(0.047) \\
& \widehat{\omega}=0.917(0.032) \\
& \widehat{\gamma}=0.169(0.032)
\end{aligned}
$$

Analysis of Chlamydia Data

State-wide Interval Estimates/Prediction

\rightarrow Estimates

- Observed
\rightarrow Prediction

2018 Estimated
County Population Case Count 95\% CL

Multnomah
Washington Clackamas Lane Marion

Grant
Wallowa
Gilliam
Sherman
Wheeler

811,880
597,695 416,075 379,611 346,868

7651
$5558(4863,6227)$ $3896(3405,4373)$ 3607 (3155, 4050)
3244 (2829, 3646)
$(6696,8574)$

7176
7081
1894
1708
1366
$(56,95)$
71
$(52,91)$
20
$(11,29)$
18
$(9,28)$
14
$(7,22)$

Year: 2010

Estimated Prevalence

[0,0.006]
(0.006,0.007]
(0.007,0.008]
(0.008,0.009]
(0.009,0.11]
N-Mixture models provide estimates of N when $p<1$.

N -Mixture models provide estimates of N when $p<1$.

Generalized model allows open populations.

Asymptotic approximation allows large counts.

Asymptotic approximation allows large counts.

Spatial model accounts for spatial dependence.

Future Work

- Further model testing and refinement
- Develop identifiability diagnostic
- Adapt model for other diseases (susceptible/infected/recovered)

Thanks to my coauthors, Ben and Claudio.

Thanks to my coauthors, Ben and Claudio.

Thank you!

