Motivation Mo

Model Components Zero-ir

Zero-inflated Spatial Model

Model Fitting

Spatial Prediction

Conclusions

Spatial Modeling of Zero-Inflated Data with Copula Models

Lisa Madsen¹ Vicente Monleon²

¹ Oregon State University

²USDA Forest Service, PNW Research Station

WNAR 2021

Motivation ●000 Model Components

Zero-inflated Spatial Model

Model Fitting

Spatial Prediction

Conclusions

Forest Inventory and Analysis (FIA)

Motivation	
0000	

Zero-inflated Spatial Model

Model Fitting

Spatial Prediction

Conclusions

Variables of Interest

Motivation	Model Components
0000	00000 000000 00000000000

Zero-inflated Spatial Model

Model Fitting

Spatial Prediction

- Spatial dependence
- Non-normality
- Zero-inflation

Motivation	Model Components
0000	00000 000000 00000000000

Zero-inflated Spatial Model

Model Fitting

Spatial Prediction

- Spatial dependence
- Non-normality
- Zero-inflation
- Big data

Motivation
0000

Zero-inflated Spatial Model

Model Fitting

Spatial Prediction

Conclusions

Outline

Motivation

Model Components

Gaussian Copula Marginal Distributions Spatial Dependence Model

Zero-inflated Spatial Model

Model Fitting

Spatial Prediction

Motivation	

Model Components •oooo •oooo

Zero-inflated Spatial Model

Model Fitting

Spatial Prediction

Conclusions

Gaussian Copula

Outline

Motivation

Model Components Gaussian Copula

Marginal Distributions Spatial Dependence Model

Zero-inflated Spatial Model

Model Fitting

Spatial Prediction

Motivation	Model Components ○●○○○ ○○○○○○ ○○○○○○○○○○○○○○○○○○○○○○	Zero-inflated Spatial Model oo	Model Fitting	Spatial Prediction	Conclusions
Gaussian Cop	ula				

Copula Models

Definition: A **copula** is a multivariate distribution with uniform marginals.

Motivation	Model Components ○●○○○ ○○○○○○ ○○○○○○○○○○○○○○○○	Zero-inflated Spatial Model	Model Fitting	Spatial Prediction	Conclusions
Gaussian Cop	ula				

Copula Models

Definition: A **copula** is a multivariate distribution with uniform marginals.

Copula models are useful for modeling multivariate data with arbitrary marginal distributions.

Motivation 0000	Model Components ○●○○○ ○○○○○○ ○○○○○○○○○○○○○○○○	Zero-inflated Spatial Model	Model Fitting	Spatial Prediction	Conclusions
Gaussian Cop	ula				

Copula Models

Definition: A **copula** is a multivariate distribution with uniform marginals.

Copula models are useful for modeling multivariate data with arbitrary marginal distributions.

The **Gaussian copula** allows us to adapt methodology based on the multivariate normal distribution to non-normal data.

Motivation	Model Components	Zero-inflated Spatial Model	Model Fitting	Spatial Prediction	Conclusions
	00000 000000 00000000000				
Gaussian Cop	oula				

Copula Construction

If Y has continuous cdf F(y), then $F(Y) \sim U(0, 1)$.

Motivation 0000	Model Components	Zero-inflated Spatial Model	Model Fitting	Spatial Prediction	Conclusions
Gaussian Co	pula				

Copula Construction

If Y has continuous cdf F(y), then $F(Y) \sim U(0, 1)$.

Conversely, if $U \sim U(0, 1)$, then $F^{-1}(U) \sim F$.

Motivation 0000	Model Components	Zero-inflated Spatial Model	Model Fitting	Spatial Prediction	Conclusions
Gaussian Co	pula				

Discrete Marginals

If Y is discrete, then $F^{-1}(U) \sim F$, but F(Y) is not uniform.

Motivation	Model Components 0000● 000000 0000000000000000000000	Zero-inflated Spatial Model	Model Fitting	Spatial Prediction	Conclusions
Gaussian Cop	ula				

Notation:

 Φ_{Σ} denotes the *n*-dimensional standard normal cdf with correlation matrix $\Sigma.$

Motivation 0000	Model Components	Zero-inflated Spatial Model	Model Fitting	Spatial Prediction	Conclusions
Gaussian Con	oula				

Notation:

 Φ_{Σ} denotes the *n*-dimensional standard normal cdf with correlation matrix $\Sigma.$

 Φ denotes the univariate standard normal cdf.

Motivation 0000	Model Components 0000● 000000 000000000000	Zero-inflated Spatial Model	Model Fitting	Spatial Prediction	Conclusions
Gaussian Cop	ula				

Notation:

 Φ_{Σ} denotes the *n*-dimensional standard normal cdf with correlation matrix $\Sigma.$

 Φ denotes the univariate standard normal cdf.

 F_1, \ldots, F_n are (preferably continuous) marginal cdfs.

Motivation	Model Components 0000● 000000 0000000000000000000000	Zero-inflated Spatial Model	Model Fitting	Spatial Prediction	Conclusions
Gaussian Copula					

Notation:

 Φ_{Σ} denotes the *n*-dimensional standard normal cdf with correlation matrix $\Sigma.$

 Φ denotes the univariate standard normal cdf.

 F_1, \ldots, F_n are (preferably continuous) marginal cdfs.

Copula CDF:

$$C(\mathbf{y}; \Sigma) = \Phi_{\Sigma}[\Phi^{-1}\{F_1(y_1)\}, \dots, \Phi^{-1}\{F_n(y_n)\}]$$

Motivation	Model Components 0000● 000000 0000000000000000000000	Zero-inflated Spatial Model	Model Fitting	Spatial Prediction	Conclusions
Gaussian Copula					

Notation:

 Φ_{Σ} denotes the *n*-dimensional standard normal cdf with correlation matrix $\Sigma.$

 Φ denotes the univariate standard normal cdf.

 F_1, \ldots, F_n are (preferably continuous) marginal cdfs.

Copula CDF:

$$C(\mathbf{y}; \mathbf{\Sigma}) = \Phi_{\mathbf{\Sigma}}[\Phi^{-1}\{F_1(y_1)\}, \dots, \Phi^{-1}\{F_n(y_n)\}]$$

Gaussian copula's normalizing transformation for continuous F_i : $Y_i \sim F_i$

Motivation	Model Components 0000● 000000 0000000000000000000000	Zero-inflated Spatial Model	Model Fitting	Spatial Prediction	Conclusions
Gaussian Copula					

Notation:

 Φ_{Σ} denotes the *n*-dimensional standard normal cdf with correlation matrix $\Sigma.$

 Φ denotes the univariate standard normal cdf.

 F_1, \ldots, F_n are (preferably continuous) marginal cdfs.

Copula CDF:

$$C(\mathbf{y}; \mathbf{\Sigma}) = \Phi_{\mathbf{\Sigma}}[\Phi^{-1}\{F_1(y_1)\}, \dots, \Phi^{-1}\{F_n(y_n)\}]$$

Gaussian copula's normalizing transformation for continuous F_i : $Y_i \sim F_i \Rightarrow F_i(Y_i) \sim \text{Uniform}(0, 1)$

Motivation	Model Components 0000● 000000 00000000000	Zero-inflated Spatial Model	Model Fitting	Spatial Prediction	Conclusions
Gaussian Copula					

Notation:

 Φ_{Σ} denotes the *n*-dimensional standard normal cdf with correlation matrix $\Sigma.$

 Φ denotes the univariate standard normal cdf.

 F_1, \ldots, F_n are (preferably continuous) marginal cdfs.

Copula CDF:

$$C(\mathbf{y}; \mathbf{\Sigma}) = \Phi_{\mathbf{\Sigma}}[\Phi^{-1}\{F_1(y_1)\}, \dots, \Phi^{-1}\{F_n(y_n)\}]$$

Gaussian copula's normalizing transformation for continuous F_i : $Y_i \sim F_i \Rightarrow F_i(Y_i) \sim \text{Uniform}(0, 1) \Rightarrow \Phi^{-1}\{F_i(Y_i)\} \sim N(0, 1)$

Motivation	Model Components	Zero-inflated Spatial Model
	00000 •00000 0000000000	

Model Fitting

Spatial Prediction

Conclusions

Marginal Distributions

Outline

Motivation

Model Components

Gaussian Copula Marginal Distributions

Spatial Dependence Model

Zero-inflated Spatial Model

Model Fitting

Spatial Prediction

Motivation 0000	Model Components ○○○○○ ○●○○○○○ ○○○○○○○○○○○○○○○	Zero-inflated Spatial Model	Model Fitting	Spatial Prediction	Conclusions
Marginal Dist	tributions				

Motivation 0000	Model Components ○○○○○ ○●○○○○ ○○○○○○○○○○○○	Zero-inflated Spatial Model	Model Fitting	Spatial Prediction	Conclusions 000
Marginal Dist	ributions				
count	300 - 200 -				
	100 -				

24% of plots have zero total volume.

Mo	tiva	tion
00	00	

Zero-inflated Spatial Model

Model Fitting

Spatial Prediction

Conclusions

Marginal Distributions

Zero-inflated Lognormal Distribution

$$B \sim \text{Bernoulli}(1-p)$$

Mo	tiva	tion
00	00	

Zero-inflated Spatial Model

Model Fitting

Spatial Prediction

Conclusions

Marginal Distributions

Zero-inflated Lognormal Distribution

 $B \sim \text{Bernoulli}(1-p)$ $W \sim \text{Lognormal}(\mu, \sigma^2)$

Mo	tiva	tion
00	00	

Zero-inflated Spatial Model

Model Fitting

Spatial Prediction

Conclusions

Marginal Distributions

Zero-inflated Lognormal Distribution

 $B \sim \text{Bernoulli}(1-p)$ $W \sim \text{Lognormal}(\mu, \sigma^2)$ $Y = \begin{cases} 0 & B = 1 \\ W & B = 0 \end{cases}$

Motiv	ation	
0000		

Zero-inflated Spatial Model

Model Fitting

Spatial Prediction

Conclusions

Marginal Distributions

Zero-inflated Lognormal Distribution

 $egin{array}{rcl} B &\sim & {
m Bernoulli}(1-p) \ W &\sim & {
m Lognormal}(\mu,\sigma^2) \ Y &= & \left\{ egin{array}{c} 0 & B=1 \ W & B=0 \end{array}
ight. \end{array}$

$$P(Y=0) = p$$

Motiv	ation	
0000		

Zero-inflated Spatial Model

Model Fitting

Spatial Prediction

Conclusions

Marginal Distributions

Zero-inflated Lognormal Distribution

 $egin{array}{rcl} B &\sim & {
m Bernoulli}(1-p) \ W &\sim & {
m Lognormal}(\mu,\sigma^2) \ Y &= & \left\{ egin{array}{c} 0 & B=1 \ W & B=0 \end{array}
ight. \end{array}$

$$\begin{array}{rcl} P(Y=0) &=& p\\ \log(W) &\sim & N(\mu,\sigma^2) \end{array}$$

Mo	tiva	atio	
00	oc		

Zero-inflated Spatial Model

Model Fitting

Spatial Prediction

Conclusions

Marginal Distributions

Zero-inflated Lognormal CDF

Mo	tivat	tion
00	00	

Zero-inflated Spatial Model

Model Fitting

Spatial Prediction

Conclusions

Marginal Distributions

Zero-inflated Lognormal CDF

CDF discontinuous at 0.

Motivation	

Zero-inflated Spatial Model

Model Fitting

Spatial Prediction

Conclusions

Marginal Distributions

Continuous Zero-inflated Lognormal Distribution

$$B \sim \text{Bernoulli}(1-p)$$

Motivatio	

Zero-inflated Spatial Model

Model Fitting

batial Prediction

Conclusions

Marginal Distributions

Continuous Zero-inflated Lognormal Distribution

 $B \sim \text{Bernoulli}(1-p)$ $W-\epsilon \sim \text{Lognormal}(\mu, \sigma^2)$

Motivatio	h

Zero-inflated Spatial Model

Model Fitting

Spatial Prediction

Conclusions

Marginal Distributions

Continuous Zero-inflated Lognormal Distribution

$$B \sim \text{Bernoulli}(1 - p)$$

$$W - \epsilon \sim \text{Lognormal}(\mu, \sigma^2)$$

$$Y = \begin{cases} \text{Uniform}(0, \epsilon) & B = 1\\ W & B = 0 \end{cases}$$

Motivatio	h

Zero-inflated Spatial Model

Model Fitting

Spatial Prediction

Conclusions

Marginal Distributions

Continuous Zero-inflated Lognormal Distribution

$$B \sim \text{Bernoulli}(1-p)$$

$$W-\epsilon \sim \text{Lognormal}(\mu, \sigma^2)$$

$$Y = \begin{cases} \text{Uniform}(0, \epsilon) & B=1\\ W & B=0 \end{cases}$$

$$F(y) = \begin{cases} 0, & y < 0\\ y \cdot p/\epsilon, & 0 \le y < \epsilon\\ p + (1 - p)F_{\text{Inorm}}(y - \epsilon; \mu, \sigma^2), & y \ge \epsilon \end{cases}$$

Motivation 0000	Model Components ○○○○○ ○○○○○○ ○○○○○○○○○○○○○○○○	Zero-inflated Spatial Model	Model Fitting	Spatial Prediction	Conclusions
Marginal Dist	tributions				

Motivation	Model Components
0000	00000
	000000
	●0000000000

Spatial Dependence Model

Outline

Motivation

Model Components

Gaussian Copula Marginal Distributions Spatial Dependence Model

Zero-inflated Spatial Model

Model Fitting

Spatial Prediction

Conclusions

Zero-inflated Spatial Model

Model Fitting

Spatial Prediction
Motivation 0000	Model Components ○○○○○ ○●○○○○○○○	Zero-inflated Spatial Model	Model Fitting	Spatial Prediction	Conclusions
Spatial Depe	ndence Model				

The Gaussian copula induces dependence via the copula association matrix $\boldsymbol{\Sigma}.$

$$C(\mathbf{y}; \Sigma) = \Phi_{\Sigma}[\Phi^{-1}\{F_1(y_1)\}, \dots, \Phi^{-1}\{F_n(y_n)\}]$$

Motivation 0000	Model Components ○○○○○ ○●○○○○○○○	Zero-inflated Spatial Model	Model Fitting	Spatial Prediction	Conclusions
Spatial Depe	ndence Model				

The Gaussian copula induces dependence via the copula association matrix $\boldsymbol{\Sigma}.$

$$C(\mathbf{y}; \mathbf{\Sigma}) = \Phi_{\mathbf{\Sigma}}[\Phi^{-1}\{F_1(y_1)\}, \dots, \Phi^{-1}\{F_n(y_n)\}]$$

$$\boldsymbol{\Sigma}_{ij} = \operatorname{corr}\left(\Phi^{-1}\{F_i(Y_i)\}, \Phi^{-1}\{F_j(Y_j)\}\right)$$

Motivation 0000	Model Components ○○○○○ ○●○○○○○○○	Zero-inflated Spatial Model	Model Fitting	Spatial Prediction	Conclusions
Spatial Depe	ndence Model				

The Gaussian copula induces dependence via the copula association matrix $\boldsymbol{\Sigma}.$

$$C(\mathbf{y}; \mathbf{\Sigma}) = \Phi_{\mathbf{\Sigma}}[\Phi^{-1}\{F_1(y_1)\}, \dots, \Phi^{-1}\{F_n(y_n)\}]$$

$$\boldsymbol{\Sigma}_{ij} = \operatorname{corr}\left(\Phi^{-1}\{F_i(Y_i)\}, \Phi^{-1}\{F_j(Y_j)\}\right) \neq \operatorname{corr}(Y_i, Y_j)$$

Motivation 0000	Model Components ○○○○○ ○●○○○○○○○	Zero-inflated Spatial Model	Model Fitting	Spatial Prediction	Conclusions
Spatial Depe	ndence Model				

The Gaussian copula induces dependence via the copula association matrix Σ .

$$C(\mathbf{y}; \mathbf{\Sigma}) = \Phi_{\mathbf{\Sigma}}[\Phi^{-1}\{F_1(y_1)\}, \dots, \Phi^{-1}\{F_n(y_n)\}]$$

$$\boldsymbol{\Sigma}_{ij} = \operatorname{corr}\left(\Phi^{-1}\{F_i(Y_i)\}, \Phi^{-1}\{F_j(Y_j)\}\right) \neq \operatorname{corr}(Y_i, Y_j)$$

If F_i and F_j are continuous, Σ_{ij} is the **rank** correlation between Y_i and Y_j .

Motivation 0000	Model Components ○○○○○ ○●○○○○○○○	Zero-inflated Spatial Model	Model Fitting	Spatial Prediction	Conclusions
Spatial Depe	ndence Model				

The Gaussian copula induces dependence via the copula association matrix Σ .

$$C(\mathbf{y}; \mathbf{\Sigma}) = \Phi_{\mathbf{\Sigma}}[\Phi^{-1}\{F_1(y_1)\}, \dots, \Phi^{-1}\{F_n(y_n)\}]$$

$$\Sigma_{ij} = \operatorname{corr} \left(\Phi^{-1} \{ F_i(Y_i) \}, \Phi^{-1} \{ F_j(Y_j) \} \right) \neq \operatorname{corr}(Y_i, Y_j)$$

If F_i and F_j are continuous, Σ_{ij} is the **rank** correlation between Y_i and Y_j .

Model the elements of Σ as a decreasing function of distance.

Motivation	Model Components ○○○○○ ○○○○○○ ○○●○○○○○○○○○○○○○○○○○○○	Zero-inflated Spatial Model	Model Fitting	Spatial Prediction	Conclusions
Spatial Deper	ndence Model				

Definition: When h_{ij} denotes the distance between locations of observations *i* and *j*, the **isotropic variogram** is

$$2\gamma(h_{ij}) = \operatorname{var}(Y_i - Y_j)$$

Motivation	Model Components ○○○○○ ○○●○○○○○○○○○○○○○○○○○○○○○○○○○○○	Zero-inflated Spatial Model	Model Fitting	Spatial Prediction	Conclusions
Spatial Deper	ndence Model				

Definition: When h_{ij} denotes the distance between locations of observations *i* and *j*, the **isotropic variogram** is

$$2\gamma(h_{ij}) = \operatorname{var}(Y_i - Y_j)$$

Exponential Semivariogram:

$$\gamma(h) = \begin{cases} 0, & h = 0\\ \theta_n + \theta_s [1 - \exp(-h/\theta_r)], & h > 0 \end{cases}$$

Motivation 0000	Model Components ○○○○○ ○○○○○○ ○○○○○○○○○○○○○○○○○○○○○	Zero-inflated Spatial Model	Model Fitting	Spatial Prediction	Conclusions
Spatial Deper	ndence Model				

Definition: When h_{ij} denotes the distance between locations of observations *i* and *j*, the **isotropic variogram** is

$$2\gamma(h_{ij}) = \operatorname{var}(Y_i - Y_j)$$

Exponential Semivariogram:

$$\gamma(h) = \begin{cases} 0, & h = 0\\ \theta_n + \theta_s [1 - \exp(-h/\theta_r)], & h > 0 \end{cases}$$

 θ_n is the **nugget**

Motivation	Model Components ○○○○○ ○○○○○○ ○○○○○○○○○○○○○○○○○○○○○	Zero-inflated Spatial Model	Model Fitting	Spatial Prediction	Conclusions
Spatial Deper	ndence Model				

Definition: When h_{ij} denotes the distance between locations of observations *i* and *j*, the **isotropic variogram** is

$$2\gamma(h_{ij}) = \operatorname{var}(Y_i - Y_j)$$

Exponential Semivariogram:

$$\gamma(h) = \begin{cases} 0, & h = 0\\ \theta_n + \theta_s [1 - \exp(-h/\theta_r)], & h > 0 \end{cases}$$

 θ_n is the **nugget** θ_s is the **partial sill**

Motivation	Model Components	Zero-inflated Spatial Model	Model Fitting	Spatial Prediction	Conclusions
Spatial Deper	ndence Model				

Definition: When h_{ij} denotes the distance between locations of observations *i* and *j*, the **isotropic variogram** is

$$2\gamma(h_{ij}) = \operatorname{var}(Y_i - Y_j)$$

Exponential Semivariogram:

$$\gamma(h) = \begin{cases} 0, & h = 0\\ \theta_n + \theta_s [1 - \exp(-h/\theta_r)], & h > 0 \end{cases}$$

 θ_n is the **nugget** θ_s is the **partial sill** θ_r is the **range**

Motivation	Model Compone
0000	00000
	000000
	00000000000

Components Zero-inflated Spatial Model

Model Fitting

Spatial Prediction

Conclusions

Spatial Dependence Model

Exponential Semivariogram

Motivation	Model Components ○○○○○ ○○○○○○ ○○○○○○○○○○○○○○○○○○○○○	Zero-inflated Spatial Model	Model Fitting	Spatial Prediction	Conclusions
Spatial Deper	idence Model				

Covariance

If
$$\operatorname{var}(Y_i) = \operatorname{var}(Y_j)$$
, then $2\gamma(h_{ij}) = 2\operatorname{var}(Y_i) - 2\operatorname{cov}(Y_i, Y_j)$

Motivation	Model Components ○○○○○ ○○○○○○ ○○○○○○○○○○○○○○○○○○○○○	Zero-inflated Spatial Model	Model Fitting	Spatial Prediction	Conclusions
Spatial Depen	dence Model				

Covariance

If
$$var(Y_i) = var(Y_j)$$
, then $2\gamma(h_{ij}) = 2var(Y_i) - 2cov(Y_i, Y_j)$

Exponential covariance function:

$$C(h) = \begin{cases} \theta_n + \theta_s, & h = 0\\ \theta_s \exp(-h/\theta_r), & h > 0 \end{cases}$$

Motivation	Model Compone
0000	
	000000
	00000000000

del Components Zero-inflat

Zero-inflated Spatial Model

Model Fitting

Spatial Prediction

Conclusions

Spatial Dependence Model

Exponential Covariance Function

Motivation	Model Components ○○○○○ ○○○○○○ ○○○○○○○○○○○○○○○○○○○○○	Zero-inflated Spatial Model	Model Fitting	Spatial Prediction	Conclusions
Spatial Deper	ndence Model				

Correlation

Exponential correlation function:

$$\rho(h) = \begin{cases} 1, & h = 0\\ \frac{\theta_s}{\theta_s + \theta_n} \exp(-h/\theta_r), & h > 0 \end{cases}$$

Motivation	Model Components
0000	00000
	000000
	0000000000

Zero-inflated Spatial Model

Model Fitting

Spatial Prediction

Conclusions

Spatial Dependence Model

Exponential Correlation Function

Motivation 0000 Model Components

Zero-inflated Spatial Model

Model Fitting

Spatial Prediction

Conclusions

Spatial Gaussian Copula Model

Let $\boldsymbol{Y} = [Y_1, \dots, Y_n]$ have cdf

$$F(\mathbf{y}; \Sigma) = \Phi_{\Sigma}[\Phi^{-1}\{F_1(y_1)\}, \dots, \Phi^{-1}\{F_n(y_n)\}]$$

Motivation

Model Components Z

Zero-inflated Spatial Model

Model Fitting

Spatial Prediction

Conclusions

Spatial Gaussian Copula Model

Let $\boldsymbol{Y} = [Y_1, \dots, Y_n]$ have cdf

$$F(\mathbf{y}; \Sigma) = \Phi_{\Sigma}[\Phi^{-1}\{F_1(y_1)\}, \dots, \Phi^{-1}\{F_n(y_n)\}].$$

Association matrix Σ has *ij*th element

$$\Sigma_{ij} =
ho(h_{ij}) = \left\{ egin{array}{cc} 1, & h_{ij} = 0 \ lpha_N \exp(-h_{ij}/lpha_R), & h_{ij} > 0 \end{array}
ight.$$

where h_{ij} denotes the Euclidean distance between locations of observations *i* and *j*.

Motivation Model Components

Zero-inflated Spatial Model $\circ \bullet$

Model Fitting

Spatial Prediction

Conclusions

Zero Inflated Continuous Marginals

 $Y_i \sim F_i$ with

$$F_{i}(y) = \begin{cases} 0, & y < 0\\ y \cdot p_{i}/\epsilon, & 0 \le y < \epsilon\\ p_{i} + (1 - p_{i})F_{\text{Inorm}}(y - \epsilon; \mu_{i}, \sigma^{2}), & y \ge \epsilon \end{cases}$$

where p_i and μ_i may depend on covariates.

Motivation

Model Components

Zero-inflated Spatial Model

Model Fitting

Spatial Prediction

Conclusions

Survey Unit 1 Volume Map

Total Volume (m³ha⁻¹)

n = 1224 plots 298 with zero total volume

Motivation	Model Components	Zero-inflated Spatial Model	Model Fitting	Spatial Prediction	Con
0000	00000 000000 0000000000	00	0000000000	000000000000000000000000000000000000000	000

Logistic Submodel

Logistic regression model for the Bernoulli process:

$$B_i = \begin{cases} 1, & \text{plot } i \text{ total volume} = 0 \\ 0, & \text{otherwise} \end{cases}$$
$$B_i \sim \text{Bernoulli}(p_i)$$
$$\text{logit}(p_i) = X_i\beta$$
$$X_i = \text{row vector of covariates}$$

clusions

Motivation	

Model Components

Zero-inflated Spatial Model

Model Fitting

Spatial Prediction

Conclusions

Lognormal Submodel

Log-linear regression model for the 926 non-0 volume observations:

 $egin{array}{rcl} Y_i &=& ext{total volume in } i ext{th plot, if positive} \ \log(m{Y}) &\sim& N(m{\mu},\sigma^2) \ m{\mu} &=& m{X}_{m{y}} m{\gamma} \end{array}$

where X_y is a design matrix of covariates.

Motivation	Model Compone
	000000
	00000000000

Zero-inflated Spatial Model

Model Fitting

Spatial Prediction

Conclusions

Potential covariates:

forind indicator of forest

ts

- annpre mean annual precipitation
- anntmp mean annual temperature
- smrtp moisture stress during growing season
- ndvi vegetation greenness
- tc1 brightness
- tc2 greenness
- tc3 wetness

Motivatior	

Model Fitting

Spatial Prediction

Conclusions

Logistic Model Fit

From R's glm function.

Coefficients:

	Estimate	Std. Error	z value	Pr(> z)	
(Intercept)	-2.7570	0.2355	-11.709	< 2e-16	* * *
forind	-0.5957	0.1425	-4.181	2.90e-05	* * *
tc1	1.2641	0.2315	5.460	4.77e-08	* * *
tc2	-0.6842	0.2146	-3.188	0.001435	* *
tc3	-0.9236	0.1861	-4.963	6.95e-07	* * *
annpre	-1.2260	0.3363	-3.646	0.000267	* * *
anntmp	2.1818	0.3405	6.407	1.49e-10	* * *
smrtp	-1.3573	0.4446	-3.053	0.002268	* *
ndvi	-0.7923	0.2051	-3.862	0.000112	* * *
forind:tc2	-0.2492	0.1154	-2.160	0.030756	*
forind:tc3	-0.4386	0.1351	-3.247	0.001167	* *

Motivatio	n

del Components

Model Fitting

patial Prediction

Conclusions

Lognormal Model Fit

From R's lm function.

Coefficients:

	Estimate	Std. Error	t value	Pr(> t)	
(Intercept)	5.14220	0.05453	94.308	< 2e-16	* * *
tc1	-0.57893	0.10593	-5.465	5.96e-08	* * *
tc2	-0.13481	0.07386	-1.825	0.06828	•
tc3	0.82963	0.08732	9.501	< 2e-16	* * *
annpre	0.17192	0.04515	3.808	0.00015	* * *
anntmp	0.11513	0.04663	2.469	0.01373	*
tc1:ndvi	0.08206	0.06750	1.216	0.22437	
tc2:ndvi	0.09974	0.05807	1.718	0.08617	•
anntmp:ndvi	-0.31491	0.05041	-6.247	6.38e-10	* * *
tc3:smrtp	0.27859	0.08820	3.159	0.00164	* *
tc3:annpre	0.02789	0.08764	0.318	0.75040	

Motivation	Model Components
	000000
	00000000000

Zero-inflated Spatial Model

Model Fitting

Spatial Prediction

Conclusions

Fitting the Spatial Model

Copula association matrix Σ is the spatial correlation matrix of $\Phi^{-1}{F_1(Y_1)}, \ldots, \Phi^{-1}{F_n(Y_n)}$.

Motivation	Model Components	Zero-inflated Spatial Model	Model Fitting	Spatial Prediction	Conclusion
	00000 000000 0000000000		000000000000		

Fitting the Spatial Model

Copula association matrix Σ is the spatial correlation matrix of $\Phi^{-1}{F_1(Y_1)}, \ldots, \Phi^{-1}{F_n(Y_n)}$.

Estimate variogram of $\Phi^{-1}{\{\widehat{F}_1(Y_1)\},\ldots,\Phi^{-1}\{\widehat{F}_n(Y_n)\}}$, where

$$\widehat{F}_{i}(y) = \begin{cases} 0, & y < 0\\ y \cdot \widehat{p}_{i}/\epsilon, & 0 \le y < \epsilon\\ \widehat{p}_{i} + (1 - \widehat{p}_{i})F_{\text{Inorm}}(y - \epsilon; \widehat{\mu}_{i}, \widehat{\sigma}^{2}), & y \ge \epsilon \end{cases}$$

Motivation	Model Components	Zero-inflated Spatial Model	Model Fitting	Spatial Prediction	Conclusion
	00000 000000 00000000000		000000000000		

Fitting the Spatial Model

Copula association matrix Σ is the spatial correlation matrix of $\Phi^{-1}{F_1(Y_1)}, \ldots, \Phi^{-1}{F_n(Y_n)}$.

Estimate variogram of $\Phi^{-1}{\{\widehat{F}_1(Y_1)\},\ldots,\Phi^{-1}\{\widehat{F}_n(Y_n)\}}$, where

$$\widehat{F}_{i}(y) = \begin{cases} 0, & y < 0\\ y \cdot \widehat{p}_{i}/\epsilon, & 0 \le y < \epsilon\\ \widehat{p}_{i} + (1 - \widehat{p}_{i})F_{\text{Inorm}}(y - \epsilon; \widehat{\mu}_{i}, \widehat{\sigma}^{2}), & y \ge \epsilon \end{cases}$$

Choose $\epsilon < \min\{Y_i | Y_i > 0\}$

Motivation	Model Components	Zero-inflated Spatial Model	Model Fitting	Spatial Prediction	Conclusions
	00000 000000 0000000000		0000000000000		

Empirical Variogram

Calculate empirical variogram of $\Phi^{-1}{\{\widehat{F_1}(y_1)\},\ldots,\Phi^{-1}\{\widehat{F_n}(y_n)\}}$ using R gstat package.

Motivation				

Model Components

Zero-inflated Spatial Model

Model Fitting

Spatial Prediction

Conclusions

Fitted Exponential Variogram

	model	psill	range
1	Nug	0.7201172	0.00
2	Exp	0 1581205	28559 81

Motivation	Model Componer
	000000
	00000000000

Zero-inflated Spatial Model

Model Fitting

Spatial Prediction

Conclusions

Fitted Exponential Variogram

	model	psill	range
1	Nug	0.7201172	0.00
2	Exp	0.1581205	28559.81

Motivation Model Components

1

Zero-inflated Spatial Model

Model Fitting

Spatial Prediction

Conclusions

Estimated Exponential Correlation Function

$$\widehat{lpha_N} = rac{0.1581205}{0.1581205 + 0.7201172} \approx 0.18$$

 $\widehat{lpha_R} \approx 28560$

For plot *i* and plot *j* separated by h_{ij} meters, $\widehat{\text{corr}} \left[\Phi^{-1} \{ F_i(y_i) \}, \Phi^{-1} \{ F_j(y_j) \} \right] = 0.18 \exp(-h_{ij}/28560).$ Motivation Model Components

Zero-inflated Spatial Model

Model Fitting

Spatial Prediction

Conclusions

Estimated Exponential Correlation Function

$$\widehat{lpha_N} = rac{0.1581205}{0.1581205 + 0.7201172} \approx 0.18$$

 $\widehat{lpha_R} \approx 28560$

For plot *i* and plot *j* separated by h_{ij} meters, $\widehat{\text{corr}} \left[\Phi^{-1} \{ F_i(y_i) \}, \Phi^{-1} \{ F_j(y_j) \} \right] = 0.18 \exp(-h_{ij}/28560).$

Motivation	Μ
	

lodel Components Zer

Zero-inflated Spatial Model

Model Fitting

Spatial Prediction

Conclusions

Fitted Variogram for Intercept-only Models

 $logit(p_i) = \beta_0$ $\mu_i = \mu$

Motivation	Model Componer
	000000
	00000000000

Zero-inflated Spatial Model

Model Fitting

Spatial Prediction

Conclusions

Fitted Variogram for Intercept-only Models

 $logit(\boldsymbol{p}_i) = \beta_0$ $\mu_i = \mu$

Motivation		

Model Components

Zero-inflated Spatial Model

Model Fitting

 Conclusions

Survey Unit 0

Motivation	

Zero-inflated Spatial Model

Model Fitting

Spatial Prediction

Conclusions

Block Kriging

Motivation 0000 Model Components

Zero-inflated Spatial Model

Model Fitting

Spatial Prediction

Conclusions

Kriging With Normal Data

Suppose

$$\begin{bmatrix} \mathbf{Z}_{0} \\ \mathbf{Z}_{U} \end{bmatrix} \sim N\left(\begin{bmatrix} \boldsymbol{\mu}_{0} \\ \boldsymbol{\mu}_{U} \end{bmatrix}, \begin{bmatrix} \boldsymbol{\Sigma}_{0} & \boldsymbol{\Sigma}_{0U} \\ \boldsymbol{\Sigma}_{0U}^{'} & \boldsymbol{\Sigma}_{U} \end{bmatrix} \right)$$

where

- $m{Z}_{m{O}}~\sim~N(m{\mu}_{m{O}}, m{\Sigma}_{m{O}})$ are the observed data
- $Z_{
 m U} ~\sim~ N(\mu_{
 m U},\Sigma_{
 m U})$ are the unobserved data
- $\Sigma_{OU} = cov(\mathbf{Z}_{O}, \mathbf{Z}_{U})$ is the cross-covariance matrix

lotivation	Model Components	Zero-in
	00000	
	000000	
	000000000000	

Model Fitting

Spatial Prediction

Conclusions

Predicting Z_U

$$\begin{aligned} E(\boldsymbol{Z}_{\mathsf{U}}|\boldsymbol{Z}_{\mathsf{O}}) &= \boldsymbol{\mu}_{\mathsf{U}} + \boldsymbol{\Sigma}_{\mathsf{O}\mathsf{U}}^{'}\boldsymbol{\Sigma}_{\mathsf{O}}^{-1}(\boldsymbol{Z}_{\mathsf{O}} - \boldsymbol{\mu}_{\mathsf{O}}) \\ \mathsf{var}(\boldsymbol{Z}_{\mathsf{U}}|\boldsymbol{Z}_{\mathsf{O}}) &= \boldsymbol{\Sigma}_{\mathsf{U}} - \boldsymbol{\Sigma}_{\mathsf{O}\mathsf{U}}^{'}\boldsymbol{\Sigma}_{\mathsf{O}}^{-1}\boldsymbol{\Sigma}_{\mathsf{O}\mathsf{U}} \end{aligned}$$

Motivation	Model Components	Zero-inflated Spatial Model	Model Fitting	Spatial Prediction	Conclusions

Predicting Z_U

$$E(\mathbf{Z}_{U}|\mathbf{Z}_{0}) = \mu_{U} + \Sigma_{OU}^{'}\Sigma_{O}^{-1}(\mathbf{Z}_{0} - \mu_{O})$$

var $(\mathbf{Z}_{U}|\mathbf{Z}_{O}) = \Sigma_{U} - \Sigma_{OU}^{'}\Sigma_{O}^{-1}\Sigma_{OU}$

Empirical Best Linear Unbiased Predictor is

$$\widehat{\textbf{Z}}_{\textbf{U}} = \widehat{\mu}_{\textbf{U}} + \widehat{\boldsymbol{\Sigma}}_{\textbf{OU}}^{'}\widehat{\boldsymbol{\Sigma}}_{\textbf{O}}^{-1}(\textbf{Z}_{\textbf{O}} - \widehat{\mu}_{\textbf{O}}),$$

where $\hat{\mu}_{U}$ and $\hat{\mu}_{O}$ are weighted least squares estimates.

Motivation	Model Components	Zero-inflated Spatial Model	Model Fitting	Spatial Prediction	Conclusions

Predicting Z_U

$$\begin{aligned} E(\boldsymbol{Z}_{\mathsf{U}}|\boldsymbol{Z}_{\mathsf{O}}) &= \boldsymbol{\mu}_{\mathsf{U}} + \boldsymbol{\Sigma}_{\mathsf{O}\mathsf{U}}^{'}\boldsymbol{\Sigma}_{\mathsf{O}}^{-1}(\boldsymbol{Z}_{\mathsf{O}} - \boldsymbol{\mu}_{\mathsf{O}}) \\ \mathsf{var}(\boldsymbol{Z}_{\mathsf{U}}|\boldsymbol{Z}_{\mathsf{O}}) &= \boldsymbol{\Sigma}_{\mathsf{U}} - \boldsymbol{\Sigma}_{\mathsf{O}\mathsf{U}}^{'}\boldsymbol{\Sigma}_{\mathsf{O}}^{-1}\boldsymbol{\Sigma}_{\mathsf{O}\mathsf{U}} \end{aligned}$$

Empirical Best Linear Unbiased Predictor is

$$\widehat{\textbf{Z}}_{\textbf{U}} = \widehat{\mu}_{\textbf{U}} + \widehat{\boldsymbol{\Sigma}}_{\textbf{OU}}^{'} \widehat{\boldsymbol{\Sigma}}_{\textbf{O}}^{-1} (\textbf{Z}_{\textbf{O}} - \widehat{\mu}_{\textbf{O}}),$$

where $\hat{\mu}_{U}$ and $\hat{\mu}_{O}$ are weighted least squares estimates.

Block kriging estimate of total is $\hat{T} = \mathbf{1'} \hat{Z}_{U} + \mathbf{1'} Z_{O}$.

Motivation	Model Components	Zero-inflated Spatial Model	Model Fitting	Spatial Prediction	Conclusions

Predicting Z_U

$$E(\mathbf{Z}_{U}|\mathbf{Z}_{0}) = \mu_{U} + \Sigma_{OU}^{'}\Sigma_{O}^{-1}(\mathbf{Z}_{0} - \mu_{O})$$

var $(\mathbf{Z}_{U}|\mathbf{Z}_{O}) = \Sigma_{U} - \Sigma_{OU}^{'}\Sigma_{O}^{-1}\Sigma_{OU}$

Empirical Best Linear Unbiased Predictor is

$$\widehat{\textbf{Z}}_{\textbf{U}} = \widehat{\mu}_{\textbf{U}} + \widehat{\boldsymbol{\Sigma}}_{\textbf{OU}}^{'} \widehat{\boldsymbol{\Sigma}}_{\textbf{O}}^{-1} (\textbf{Z}_{\textbf{O}} - \widehat{\mu}_{\textbf{O}}),$$

where $\hat{\mu}_{U}$ and $\hat{\mu}_{O}$ are weighted least squares estimates.

Block kriging estimate of total is $\hat{T} = \mathbf{1}' \hat{Z}_{U} + \mathbf{1}' Z_{O}$. var $(\hat{T} - T)$ depends on Σ .

Motivation 0000	Model Components 00000 000000 0000000000	Zero-inflated Spatial Model	Model Fitting	Spatial Prediction 0000●000000000	Conclusions

Block Kriging with the Y's

Let $\mathbf{Y}_{0} = [Y_{1}, \dots, Y_{n}]$ be the vector of responses on the observed plots and $\mathbf{Y}_{U} = [Y_{n+1}, \dots, Y_{n+m}]$ be the vector of responses on the unobserved plots.

Definitions:

$$Z_{i} = \Phi^{-1} \{ F_{i}(Y_{i}) \}, i = 1, ..., n + m$$

$$Z_{0} = Z_{1}, ..., Z_{n}$$

$$Z_{U} = Z_{n+1}, ..., Z_{n+m}$$

Motivation	Model Components	Zero-inflated Spatial Model	Model Fitting	Spatial Prediction	Conclusions

Block Kriging with the Y's

Let $\mathbf{Y}_{0} = [Y_{1}, \dots, Y_{n}]$ be the vector of responses on the observed plots and $\mathbf{Y}_{U} = [Y_{n+1}, \dots, Y_{n+m}]$ be the vector of responses on the unobserved plots.

Definitions:

$$Z_{i} = \Phi^{-1} \{F_{i}(Y_{i})\}, i = 1, ..., n + m$$

$$Z_{0} = Z_{1}, ..., Z_{n}$$

$$Z_{U} = Z_{n+1}, ..., Z_{n+m}$$

$$\widehat{Z}_{i} = \Phi^{-1} \{\widehat{F}_{i}(Y_{i})\}, i = 1, ..., n$$

$$\widehat{Z}_{0} = \widehat{Z}_{1}, ..., \widehat{Z}_{n}$$

Motivation 0000 Model Components

Zero-inflated Spatial Model

Model Fitting

Spatial Prediction

Conclusions

Exploit the Copula Normalizing Transformation

Copula model:

$$\begin{bmatrix} \textbf{Z}_{\textbf{O}} \\ \textbf{Z}_{\textbf{U}} \end{bmatrix} \sim \textit{N} \left(\begin{bmatrix} \textbf{0}_{\textit{n}} \\ \textbf{0}_{\textit{m}} \end{bmatrix}, \begin{bmatrix} \boldsymbol{\Sigma}_{\textbf{O}} & \boldsymbol{\Sigma}_{\textbf{O}\textbf{U}} \\ \boldsymbol{\Sigma}_{\textbf{O}\textbf{U}}^{'} & \boldsymbol{\Sigma}_{\textbf{U}} \end{bmatrix} \right)$$

Motivation Mod

Model Components Zero

Zero-inflated Spatial Model

Model Fitting

Spatial Prediction

Conclusions

Exploit the Copula Normalizing Transformation

Copula model:

$$\begin{bmatrix} \mathbf{Z}_{\mathsf{O}} \\ \mathbf{Z}_{\mathsf{U}} \end{bmatrix} \sim N\left(\begin{bmatrix} \mathbf{0}_{n} \\ \mathbf{0}_{m} \end{bmatrix}, \begin{bmatrix} \boldsymbol{\Sigma}_{\mathsf{O}} & \boldsymbol{\Sigma}_{\mathsf{O}\mathsf{U}} \\ \boldsymbol{\Sigma}_{\mathsf{O}\mathsf{U}}' & \boldsymbol{\Sigma}_{\mathsf{U}} \end{bmatrix} \right)$$

Predict Z_{U} as

$$\widehat{\textbf{Z}}_{\textbf{U}} = \widehat{\boldsymbol{\Sigma}}_{\textbf{OU}}^{'} \widehat{\boldsymbol{\Sigma}}_{\textbf{O}}^{-1} \widehat{\textbf{Z}}_{\textbf{O}}.$$

Motivation Model Components

mponents Zero-infla

Zero-inflated Spatial Model

Model Fitting

Spatial Prediction

Conclusions

Exploit the Copula Normalizing Transformation

Copula model:

$$\begin{bmatrix} \boldsymbol{Z}_{\boldsymbol{\mathsf{O}}} \\ \boldsymbol{Z}_{\boldsymbol{\mathsf{U}}} \end{bmatrix} \sim \boldsymbol{N} \left(\begin{bmatrix} \boldsymbol{\mathsf{O}}_n \\ \boldsymbol{\mathsf{O}}_m \end{bmatrix}, \begin{bmatrix} \boldsymbol{\Sigma}_{\boldsymbol{\mathsf{O}}} & \boldsymbol{\Sigma}_{\boldsymbol{\mathsf{O}}\boldsymbol{\mathsf{U}}} \\ \boldsymbol{\Sigma}_{\boldsymbol{\mathsf{O}}\boldsymbol{\mathsf{U}}}' & \boldsymbol{\Sigma}_{\boldsymbol{\mathsf{U}}} \end{bmatrix} \right)$$

Predict **Z**_U as

$$\widehat{\textbf{\textit{Z}}}_{\textbf{U}}=\widehat{\boldsymbol{\Sigma}}_{\textbf{OU}}^{'}\widehat{\boldsymbol{\Sigma}}_{\textbf{O}}^{-1}\widehat{\textbf{\textit{Z}}}_{\textbf{O}}.$$

Then let $\widehat{Y}_i = \widehat{F}_i^{-1} \{ \Phi(\widehat{Z}_i) \}, i = 1, \dots, n + m$

Motivation Model Components

Zero-inflated Spatial Model

Model Fitting

Spatial Prediction

Conclusions

Exploit the Copula Normalizing Transformation

Copula model:

$$\begin{bmatrix} \mathbf{Z}_{\mathsf{O}} \\ \mathbf{Z}_{\mathsf{U}} \end{bmatrix} \sim N\left(\begin{bmatrix} \mathbf{0}_{n} \\ \mathbf{0}_{m} \end{bmatrix}, \begin{bmatrix} \boldsymbol{\Sigma}_{\mathsf{O}} & \boldsymbol{\Sigma}_{\mathsf{O}\mathsf{U}} \\ \boldsymbol{\Sigma}_{\mathsf{O}\mathsf{U}}^{'} & \boldsymbol{\Sigma}_{\mathsf{U}} \end{bmatrix} \right)$$

Predict Zu as

$$\widehat{\textbf{\textit{Z}}}_{\textbf{U}}=\widehat{\boldsymbol{\Sigma}}_{\textbf{OU}}^{'}\widehat{\boldsymbol{\Sigma}}_{\textbf{O}}^{-1}\widehat{\textbf{\textit{Z}}}_{\textbf{O}}.$$

Then let
$$\widehat{Y}_i = \widehat{F}_i^{-1} \{ \Phi(\widehat{Z}_i) \}, i = 1, \dots, n + m$$

Estimate total *T* as $\sum_{i=1}^{n+m} \widehat{Y}_i$.

Motivation	Model Components 00000 000000 000000	Zero-inflated Spatial Model	Model Fitting	Spatial Prediction	Conclus 000

Bad News

This doesn't work.

<i>Notivation</i>	Model Components	Ze
	000000	
	00000000000	

Model Fitting

Spatial Prediction

Conclusions

Bad News

This doesn't work.

\widehat{Z}_{U} estimates $E(Z_{U}|Z_{0})$, and $F_{i}^{-1}\{\Phi(E(Z_{i}|Z_{0}))\} \neq E(Y_{i}|Y_{0})$.

lotivation	Model Components	Zero-
000	00000	00
	000000	

Model Fitting

Spatial Prediction

Conclusions

This doesn't work.

 \widehat{Z}_{U} estimates $E(Z_{U}|Z_{0})$, and $F_{i}^{-1}\{\Phi(E(Z_{i}|Z_{0}))\} \neq E(Y_{i}|Y_{0})$.

Prediction does not account for variance of parameter estimates.

Motivation	Model Components	Zero-inflated Spatial Model	Model Fitting	Spatial Prediction
	00000 000000 00000000000			0000000000000

Estimate parameters θ = [α_N, α_R, θ, γ, σ²] by maximizing copula likelihood.

Conclusions

Motivation 0000	Model Components 00000 000000 0000000000	Zero-inflated Spatial Model	Model Fitting	Spatial Prediction ○○○○○○●○○○○○○	Conclusions
--------------------	---	-----------------------------	---------------	-------------------------------------	-------------

- Estimate parameters θ = [α_N, α_R, θ, γ, σ²] by maximizing copula likelihood.
- Generate $k = 1, ..., N_b$ realizations of $\hat{\theta}$ from estimated asymptotic distribution.

Motivation	Model Components	Zero-inflated Spatial Model	Model Fitting	Spatial Prediction	Conclusions
0000	00000 000000 0000000000	00	00000000000	000000000000000	000

- Estimate parameters θ = [α_N, α_R, θ, γ, σ²] by maximizing copula likelihood.
- Generate $k = 1, ..., N_b$ realizations of $\hat{\theta}$ from estimated asymptotic distribution.
- For each realization of $\hat{\theta}$,
 - Generate $\widehat{Z}_{U} \sim N(\mathbf{0}, \widehat{\Sigma}_{U} \widehat{\Sigma}_{OU}^{'} \widehat{\Sigma}_{O}^{-1} \widehat{\Sigma}_{OU}).$

Motivation	Model Components	Zero-inflated Spatial Model	Model Fitting	Spatial Prediction	Conclusion
	00000 000000 00000000000			000000000000000	

- Estimate parameters θ = [α_N, α_R, θ, γ, σ²] by maximizing copula likelihood.
- Generate $k = 1, ..., N_b$ realizations of $\hat{\theta}$ from estimated asymptotic distribution.
- For each realization of $\hat{\theta}$,
 - Generate $\widehat{\mathbf{Z}}_{U} \sim N(\mathbf{0}, \widehat{\Sigma}_{U} \widehat{\Sigma}_{OU}^{'} \widehat{\Sigma}_{O}^{-1} \widehat{\Sigma}_{OU}).$
 - Transform elements of \widehat{Z}_{U} to data scale: $\widehat{Y}_{i} = \widehat{F}_{i}^{-1} \{ \Phi(\widehat{Z}_{i}) \}$, where \widehat{F}_{i} is based on the realization of $\widehat{\theta}$.

	00101011
00000 00000000 00 000000000 0000000000	0000000 000

- Estimate parameters θ = [α_N, α_R, θ, γ, σ²] by maximizing copula likelihood.
- Generate $k = 1, ..., N_b$ realizations of $\hat{\theta}$ from estimated asymptotic distribution.
- For each realization of $\hat{\theta}$,
 - Generate $\widehat{\mathbf{Z}}_{U} \sim N(\mathbf{0}, \widehat{\Sigma}_{U} \widehat{\Sigma}_{OU}^{'} \widehat{\Sigma}_{O}^{-1} \widehat{\Sigma}_{OU}).$
 - Transform elements of $\widehat{\mathbf{Z}}_{U}$ to data scale: $\widehat{Y}_{i} = \widehat{F}_{i}^{-1} \{ \Phi(\widehat{Z}_{i}) \}$, where \widehat{F}_{i} is based on the realization of $\widehat{\theta}$.
 - Calculate $\widehat{T} = \mathbf{1'} \, \widehat{Y}_{U} + \mathbf{1'} \, Y_{O}$

Motivation	Model Components	Zero-inflated Spatial Model	Model Fitting	Spatial Prediction	Conclusio
	00000 000000 00000000000			000000000000000	

- Estimate parameters θ = [α_N, α_R, θ, γ, σ²] by maximizing copula likelihood.
- Generate $k = 1, ..., N_b$ realizations of $\hat{\theta}$ from estimated asymptotic distribution.
- For each realization of $\hat{\theta}$,
 - Generate $\widehat{\mathbf{Z}}_{U} \sim N(\mathbf{0}, \widehat{\Sigma}_{U} \widehat{\Sigma}_{OU}' \widehat{\Sigma}_{O}^{-1} \widehat{\Sigma}_{OU}).$
 - Transform elements of $\widehat{\mathbf{Z}}_{U}$ to data scale: $\widehat{Y}_{i} = \widehat{F}_{i}^{-1} \{ \Phi(\widehat{Z}_{i}) \}$, where \widehat{F}_{i} is based on the realization of $\widehat{\theta}$.
 - Calculate $\widehat{T} = \mathbf{1'} \, \widehat{Y}_{U} + \mathbf{1'} \, Y_{O}$
- This yields a bootstrapped distribution of \hat{T} 's. Take the median as the point prediction of the block total, and take $\alpha/2$ and $1 \alpha/2$ quantiles as lower and upper 1α prediction limits.

Motivation	

Zero-inflated Spatial Model

Model Fitting

Spatial Prediction

Conclusions

Preliminary Simulations

Covariate vectors X_1 and X_2 iid Uniform(0, 1).

Bernoulli model: $logit(p_i) = 1 - 3X_{1i}$

Lognormal model: $\log(Y_i) \sim N(1 + 5X_{2i}, 1)$

Motivation	

Zero-inflated Spatial Model

Model Fitting

Spatial Prediction

Conclusions

Preliminary Simulations

- Covariate vectors X_1 and X_2 iid Uniform(0, 1).
- Bernoulli model: $logit(p_i) = 1 3X_{1i}$
- Lognormal model: $\log(Y_i) \sim N(1 + 5X_{2i}, 1)$

This gives approximately 40% 0's.

Mo	tiva	tion

Zero-inflated Spatial Model

Model Fitting

Spatial Prediction

Conclusions

Locations

481 observed plots 3047 unobserved plots

Motivation	Model Components	Zero-inflated Spatial Model	Model Fitting	Spatial Prediction	Conclusions
0000	000000 0000000 00000000000	00	000000000000000000000000000000000000000	000000000000000000000000000000000000000	000

Exponential Spatial Dependence

Range: $\alpha_{R} = 25000$

Nugget: $\alpha_N = 0.3, 0.5, 0.8$ (weak, medium, strong dependence)

Motivation	Model Components	Zero-inflated Spatial Model	Model Fitting	Spatial Prediction	Conclusions
	00000 000000 0000000000			000000000000000000000000000000000000000	

Exponential Spatial Dependence

Range: $\alpha_{B} = 25000$ Nugget: $\alpha_N = 0.3, 0.5, 0.8$ (weak, medium, strong dependence) 1.00 0.75 Correlation Strength weak 0.50 medium strona 0.25 0.00 Λ 20000 40000 60000 Distance (km)

Motivation	Model Componen
0000	00000
	000000
	00000000000

Model Fitting

Spatial Prediction

Conclusions

Results for $\alpha_N = 0.3$

MFN is the median Frobenius norm of $\Sigma - \widehat{\Sigma}$ over the bootstrapped sample.

Motivation	Model Comp
	000000

Model Fitting

Spatial Prediction

Conclusions

Results for $\alpha_N = 0.5$

Motivation	Model Compo
	000000
	0000000000

Model Fitting

Spatial Prediction

Conclusions

Results for $\alpha_N = 0.8$

Motivation	Model Com		
	000000		

onents

Model Fitting

Spatial Prediction

Conclusions ●○○

- Gaussian copula models spatial dependence.
- Continuous zero-inflated lognormal marginal models accommodate large percentage of zeros.
- For FIA data, marginal models account for most of the spatial pattern, so spatial prediction not needed.

Motivation	

el Components

Zero-inflated Spatial Model

Model Fitting

Spatial Prediction

Conclusions

- Simulations
- Model assumptions
- Big data

Motivation	Model Components	Zero-inflated Spatial Model	Model Fitting	Spatial Prediction	Conclusions
	00000 000000 0000000000				000

Funding for this research was provided by USDA Forest Service Agreement 17-MU-11261959-061.

Many thanks to Lisa Wilson.