# Simulating Dependent Discrete Data 

Lisa Madsen<br>Dave Birkes

Portland State University<br>January 17, 2014

## Outline

1 Introduction

- Data Examples
- Motivation

2 Characterizing Dependence

- Pearson Correlation
- Spearman Correlation
- Limits to Dependence

3 Simulation Method

- Algorithm
- Limits to Dependence

4 Examples

- Seizure Example
- Weed Example


## Outline

1 Introduction

- Data Examples
- Motivation

2 Characterizing Dependence

- Pearson Correlation
- Spearman Correlation
- Limits to Dependence

3 Simulation Method

- Algorithm
- Limits to Dependence

4
Examples

- Seizure Example
- Weed Example


## Seizure Counts Over Time (Diggle et al., 2002)



## Weed Counts vs. Soil Magnesium (Heijting et al, 2007)



## Maps of Weed Counts and Magnesium




## Outline

1 Introduction

- Data Examples
- Motivation

2 Characterizing Dependence

- Pearson Correlation
- Spearman Correlation
- Limits to Dependence

3 Simulation Method

- Algorithm
- Limits to Dependence

4
E amples

- Seizure Example
- Weed Example


## Why Simulate Data?

- Assess the performance of analytical procedures


## Why Simulate Data?

- Assess the performance of analytical procedures
- Compare two or more statistical methods


## Why Simulate Data?

- Assess the performance of analytical procedures
- Compare two or more statistical methods
- Parametric bootstrap, e.g. for goodness of fit tests


## Why Simulate Data?

- Assess the performance of analytical procedures
- Compare two or more statistical methods
- Parametric bootstrap, e.g. for goodness of fit tests
- Power analysis or sample size determination


## Why Simulate Data?

- Assess the performance of analytical procedures
- Compare two or more statistical methods
- Parametric bootstrap, e.g. for goodness of fit tests
- Power analysis or sample size determination
- Find a good sampling design


## Outline

1Introduction

## - Data Examples - Motivation

2 Characterizing Dependence

- Pearson Correlation
- Spearman Correlation - Limits to Dependence

3 Simulation Method

- Algorithm
- Limits to Dependence

4
Examples

- Seizure Example
- Weed Example


## Pearson Correlation

The usual measure of dependence between $X$ and $Y$ is the Pearson product-moment correlation coefficient:

$$
\rho(X, Y)=\frac{E\{[X-E(X)][Y-E(Y)]\}}{[\operatorname{var}(X) \operatorname{var}(Y)]^{1 / 2}}=\frac{E(X Y)-E(X) E(Y)}{[\operatorname{var}(X) \operatorname{var}(Y)]^{1 / 2}} .
$$

## Pearson Correlation

The usual measure of dependence between $X$ and $Y$ is the Pearson product-moment correlation coefficient:

$$
\rho(X, Y)=\frac{E\{[X-E(X)][Y-E(Y)]\}}{[\operatorname{var}(X) \operatorname{var}(Y)]^{1 / 2}}=\frac{E(X Y)-E(X) E(Y)}{[\operatorname{var}(X) \operatorname{var}(Y)]^{1 / 2}} .
$$

Estimate $\rho(X, Y)$ from sample $\left(X_{1}, Y_{1}\right), \ldots,\left(X_{n}, Y_{n}\right)$ as

$$
\hat{\rho}(X, Y)=\frac{\sum_{i=1}^{n}\left[\left(X_{i}-\bar{X}\right)\left(Y_{i}-\bar{Y}\right)\right]}{\left[\sum_{i=1}^{n}\left(X_{i}-\bar{X}\right)^{2} \sum_{i=1}^{n}\left(Y_{i}-\bar{Y}\right)^{2}\right]^{1 / 2}},
$$

## Pearson Correlation Measures Linear Dependence

$\rho(X, X)=1$


Introduction

## Pearson Correlation Measures Linear Dependence

$$
\rho\left(\mathrm{X}, \mathrm{e}^{\wedge} \mathrm{X}\right)<1
$$



## Pearson Correlation Measures Linear Dependence

For bivariate normal $X$ and $Y, \rho(X, Y)$ completely characterizes dependence.

## Pearson Correlation Measures Linear Dependence

For bivariate normal $X$ and $Y, \rho(X, Y)$ completely characterizes dependence.

For non-normal $X$ and $Y$, other measures of dependence may be more appropriate.

## Outline

$\square$ Introduction

- Data Examples - Motivation
Data Exam
Motivation

2 Characterizing Dependence

- Pearson Correlation
- Spearman Correlation
- Limits to Dependence

3 Simulation Method

- Algorithm
- Limits to Dependence

4
E: amples

- Seizure Example
- Weed Example

1

## Spearman Correlation

The Spearman correlation coefficient is
$\rho_{S}(X, Y)=3\left\{P\left[\left(X-X_{0}\right)\left(Y-Y_{0}\right)>0\right]-P\left[\left(X-X_{0}\right)\left(Y-Y_{0}\right)<0\right]\right\}$
where

$$
\begin{array}{lll}
X_{0} & \stackrel{d}{=} & X \\
Y_{0} & \stackrel{d}{=} & Y
\end{array}
$$

with $X_{0}$ and $Y_{0}$ independent of one another and of $(X, Y)$.

## Estimating Spearman Correlation

Given bivariate sample $\left(X_{1}, Y_{1}\right), \ldots,\left(X_{n}, Y_{n}\right)$, calculate ranks $r\left(X_{i}\right)$ and $r\left(Y_{i}\right)$. Then

$$
\hat{\rho}_{S}(X, Y)=\frac{\sum_{i=1}^{n}\left\{\left[r\left(X_{i}\right)-(n+1) / 2\right]\left[r\left(Y_{i}\right)-(n+1) / 2\right]\right\}}{n\left(n^{2}-1\right) / 12},
$$

the sample Pearson correlation coefficient of the ranked data.

## Example of Ranked Bivariate Sample

$$
\left(X_{1}, Y_{1}\right), \ldots,\left(X_{n}, Y_{n}\right)=(1,5),(3,3),(0,2),(5,4)
$$

## Example of Ranked Bivariate Sample

$$
\left(X_{1}, Y_{1}\right), \ldots,\left(X_{n}, Y_{n}\right)=(1,5),(3,3),(0,2),(5,4)
$$

Ordered $X$ 's: 0, 1, 3,5

## Example of Ranked Bivariate Sample

$$
\left(X_{1}, Y_{1}\right), \ldots,\left(X_{n}, Y_{n}\right)=(1,5),(3,3),(0,2),(5,4)
$$

Ordered $X$ 's: 0, 1, 3,5
Ordered $Y$ 's: 2, 3, 4, 5

## Example of Ranked Bivariate Sample

$$
\left(X_{1}, Y_{1}\right), \ldots,\left(X_{n}, Y_{n}\right)=(1,5),(3,3),(0,2),(5,4)
$$

Ordered $X$ 's: 0, 1, 3,5
Ordered $Y$ 's: 2, 3, 4,5

Rank is position in ordered list:
$\left[r\left(X_{1}\right), r\left(Y_{1}\right)\right], \ldots,\left[r\left(X_{n}\right), r\left(Y_{n}\right)\right]=(2,4),(3,2),(1,1),(4,3)$.

## Spearman Correlation Measures Monotone Dependence

$$
\rho_{S}\left(X, e^{X}\right)=\rho_{S}(X, X)=1 \ldots
$$

## Spearman Correlation Measures Monotone Dependence

$\rho_{S}\left(X, e^{X}\right)=\rho_{S}(X, X)=1 \ldots$ provided $X$ is continuous.

## Correcting for Ties

When $X$ is discrete, it is possible to have $X$ and $Y$ so that $X=Y$ almost surely but $\rho_{S}(X, Y)<1$.

## Correcting for Ties

When $X$ is discrete, it is possible to have $X$ and $Y$ so that $X=Y$ almost surely but $\rho_{S}(X, Y)<1$.

Rescale $\rho_{S}$ so that it ranges between -1 and 1:

$$
\rho_{R S}(X, Y)=\frac{\rho_{S}(X, Y)}{\left\{\left[1-\sum_{x} p(x)^{3}\right]\left[1-\sum_{y} q(y)^{3}\right]\right\}^{1 / 2}},
$$

where $p(x)=P(X=x)$ and $q(y)=P(Y=y)$ (Nešlehová, 2007).

## Ties in Sample Ranks

Two common methods for handling ties in sample $X_{1}, \ldots, X_{n}$ :

- Random ranks: When $u$ tied values would occupy ranks $p_{1}, \ldots, p_{u}$ if they were distinct, randomly assign these $u$ ranks to the tied values.


## Ties in Sample Ranks

Two common methods for handling ties in sample $X_{1}, \ldots, X_{n}$ :

- Random ranks: When $u$ tied values would occupy ranks $p_{1}, \ldots, p_{u}$ if they were distinct, randomly assign these $u$ ranks to the tied values.

$$
0,8,4,4,4 \rightarrow 1,5, c_{1}, c_{2}, c_{3}
$$

where $c_{1}, c_{2}, c_{3}$ is a random permutation of $2,3,4$.

## Ties in Sample Ranks

Two common methods for handling ties in sample $X_{1}, \ldots, X_{n}$ :

- Random ranks: When $u$ tied values would occupy ranks $p_{1}, \ldots, p_{u}$ if they were distinct, randomly assign these $u$ ranks to the tied values.

$$
0,8,4,4,4 \rightarrow 1,5, c_{1}, c_{2}, c_{3}
$$

where $c_{1}, c_{2}, c_{3}$ is a random permutation of $2,3,4$.

- Midranks: Assign each tied value the average rank, $\frac{1}{u} \sum_{k=1}^{u} p_{k}$.


## Ties in Sample Ranks

Two common methods for handling ties in sample $X_{1}, \ldots, X_{n}$ :

- Random ranks: When $u$ tied values would occupy ranks $p_{1}, \ldots, p_{u}$ if they were distinct, randomly assign these $u$ ranks to the tied values.

$$
0,8,4,4,4 \rightarrow 1,5, c_{1}, c_{2}, c_{3}
$$

where $c_{1}, c_{2}, c_{3}$ is a random permutation of $2,3,4$.

- Midranks: Assign each tied value the average rank, $\frac{1}{u} \sum_{k=1}^{u} p_{k}$.

$$
0,8,4,4,4 \rightarrow 1,5,3,3,3
$$

## Rescaled Spearman Correlation and Midranks

For sample $\left(X_{1}, Y_{1}\right), \ldots,\left(X_{n}, Y_{n}\right)$, let the distribution of $(X, Y)$ be the empirical distribution function of the sample. Then $\rho_{R S}(X, Y)$ coincides with the sample Pearson correlation coefficient of the midranks (Nešlehová, 2007).

## Outline

$\square$ Introduction

## - Data Examples <br> - Motivation

2 Characterizing Dependence

- Pearson Correlation
- Spearman Correlation
- Limits to Dependence

Simulation Method

- Algorithm
- Limits to Dependence

4
Examples

- Seizure Example
- Weed Example


## Fréchet-Hoeffding Bounds

For $X$ and $Y$ with joint CDF $H(x, y)$ and marginal CDFs $F(x)$ and $G(y)$, the Fréchet-Hoeffding bounds are

$$
\max [F(x)+G(y)-1,0] \leq H(x, y) \leq \min [F(x), G(y)]
$$

## Fréchet-Hoeffding Bounds

For $X$ and $Y$ with joint CDF $H(x, y)$ and marginal CDFs $F(x)$ and $G(y)$, the Fréchet-Hoeffding bounds are

$$
\underbrace{\max [F(x)+G(y)-1,0]}_{W[F(x), G(y)]} \leq H(x, y) \leq \underbrace{\min [F(x), G(y)]}_{M[F(x), G(y)]} .
$$

## Fréchet-Hoeffding Bounds

For $X$ and $Y$ with joint CDF $H(x, y)$ and marginal CDFs $F(x)$ and $G(y)$, the Fréchet-Hoeffding bounds are

$$
\underbrace{\max [F(x)+G(y)-1,0]}_{W[F(x), G(y)]} \leq H(x, y) \leq \underbrace{\min [F(x), G(y)]}_{M[F(x), G(y)]} .
$$

These bounds induce margin-dependent bounds on $\rho(X, Y)$ and $\rho_{S}(X, Y)$ :

## Fréchet-Hoeffding Bounds

For $X$ and $Y$ with joint CDF $H(x, y)$ and marginal CDFs $F(x)$ and $G(y)$, the Fréchet-Hoeffding bounds are

$$
\underbrace{\max [F(x)+G(y)-1,0]}_{W[F(x), G(y)]} \leq H(x, y) \leq \underbrace{\min [F(x), G(y)]}_{M[F(x), G(y)]} .
$$

These bounds induce margin-dependent bounds on $\rho(X, Y)$ and $\rho_{S}(X, Y)$ :

$$
\rho\{W[F(x), G(y)]\} \leq \rho(X, Y) \leq \rho\{M[F(x), G(y)]\}
$$

## Fréchet-Hoeffding Bounds

For $X$ and $Y$ with joint CDF $H(x, y)$ and marginal CDFs $F(x)$ and $G(y)$, the Fréchet-Hoeffding bounds are

$$
\underbrace{\max [F(x)+G(y)-1,0]}_{W[F(x), G(y)]} \leq H(x, y) \leq \underbrace{\min [F(x), G(y)]}_{M[F(x), G(y)]} .
$$

These bounds induce margin-dependent bounds on $\rho(X, Y)$ and $\rho_{S}(X, Y)$ :

$$
\begin{array}{ll}
\rho\{W[F(x), G(y)]\} & \leq \rho(X, Y) \leq \rho\{M[F(x), G(y)]\} \\
\rho_{S}\{W[F(x), G(y)]\} & \leq \rho_{S}(X, Y) \leq \rho_{S}\{M[F(x), G(y)]\}
\end{array}
$$

## Outline

1Introduction

- Data Examples - Motivation

2 Characterizing Dependence - Pearson Correlation - Spearman Correlation - Limits to Dependence

3 Simulation Method

- Algorithm
- Limits to Dependence


## Examples

- Seizure Example
- Weed Example


## Simulation Algorithm

Suppose we want to simulate dependent $\boldsymbol{Y}=\left[Y_{1}, \ldots, Y_{N}\right]^{\prime}$ where $Y_{i}$ has marginal CDF $F_{i}$.

1. Simulate a multivariate standard normal vector $\boldsymbol{Z}$ with variance-covariance matrix $\boldsymbol{\Sigma}_{\boldsymbol{z}}$. Note: $\left\{\boldsymbol{\Sigma}_{\boldsymbol{z}}\right\}_{i j}=\rho\left(\boldsymbol{Z}_{i}, \boldsymbol{Z}_{j}\right)$.

## Simulation Algorithm

Suppose we want to simulate dependent $\boldsymbol{Y}=\left[Y_{1}, \ldots, Y_{N}\right]^{\prime}$ where $Y_{i}$ has marginal CDF $F_{i}$.

1. Simulate a multivariate standard normal vector $\boldsymbol{Z}$ with variance-covariance matrix $\boldsymbol{\Sigma}_{\boldsymbol{z}}$. Note: $\left\{\boldsymbol{\Sigma}_{\boldsymbol{z}}\right\}_{i j}=\rho\left(\boldsymbol{Z}_{i}, \boldsymbol{Z}_{j}\right)$.
2. Transform each element of $\boldsymbol{Z}$ to obtain desired marginals:

$$
Y_{i}=F_{i}^{-1}\left\{\Phi\left(Z_{i}\right)\right\}
$$

where $\Phi(\cdot)$ denotes the standard normal CDF.

## Inverse CDF for Discrete Distributions

## Bernoulli(0.4) CDF



$$
F_{i}^{-1}(u)=\inf \left\{y: F_{i}(y) \geq u\right\}
$$

## $\operatorname{corr}\left(Z_{i}, Z_{j}\right) \neq 0$ Induces Dependence Between $Y_{i}, Y_{j}$

Since $Y_{i}=F_{i}^{-1}\left\{\Phi\left(Z_{i}\right)\right\}$, both $\rho\left(Y_{i}, Y_{j}\right)$ and $\rho_{S}\left(Y_{i}, Y_{j}\right)$ can be written as functions of $F_{i}, F_{j}$, and $\rho\left(Z_{i}, Z_{j}\right)$.

## $\operatorname{corr}\left(Z_{i}, Z_{j}\right) \neq 0$ Induces Dependence Between $Y_{i}, Y_{j}$

Since $Y_{i}=F_{i}^{-1}\left\{\Phi\left(Z_{i}\right)\right\}$, both $\rho\left(Y_{i}, Y_{j}\right)$ and $\rho_{S}\left(Y_{i}, Y_{j}\right)$ can be written as functions of $F_{i}, F_{j}$, and $\rho\left(Z_{i}, Z_{j}\right)$.

Given target marginals $F_{i}, F_{j}$, and either $\rho\left(Y_{i}, Y_{j}\right)$ or $\rho_{S}\left(Y_{i}, Y_{j}\right)$, can numerically solve an equation to find $\rho\left(Z_{i}, Z_{j}\right)$.

## Outline

1
Introduction

## - Data Examples - Motivation

2
Characterizing Dependence

- Pearson Correlation
- Spearman Correlation
- Limits to Dependence

3 Simulation Method

- Algorithm
- Limits to Dependence


## Method Achieves Any $\rho$ Within Fréchet-Hoeffding Bounds

## Theorem 1

Let $Y_{1} \sim F_{1}$ and $Y_{2} \sim F_{2}$ denote a pair of random variables simulated according to the described method. Assume $Y_{1}$ and $Y_{2}$ have finite variance. Let $\rho^{*}(\delta)$ denote $\rho\left(Y_{1}, Y_{2}\right)$ as a function of $\delta \equiv \rho\left(Z_{1}, Z_{2}\right)$. Then $\left\{\rho^{*}(\delta): \delta \in[-1,1]\right\}=[\rho(W), \rho(M)]$.

## Proof.

$\rho^{*}$ is a continuous function of $\delta$ and $\rho^{*}(-1)=\rho(W)$ and $\rho^{*}(-1)=\rho(M)$.

## Method Achieves Any $\rho$ Within Fréchet-Hoeffding Bounds

## Theorem 1

Let $Y_{1} \sim F_{1}$ and $Y_{2} \sim F_{2}$ denote a pair of random variables simulated according to the described method. Assume $Y_{1}$ and $Y_{2}$ have finite variance. Let $\rho^{*}(\delta)$ denote $\rho\left(Y_{1}, Y_{2}\right)$ as a function of $\delta \equiv \rho\left(Z_{1}, Z_{2}\right)$. Then $\left\{\rho^{*}(\delta): \delta \in[-1,1]\right\}=[\rho(W), \rho(M)]$.

## Proof.

$\rho^{*}$ is a continuous function of $\delta$ and $\rho^{*}(-1)=\rho(W)$ and $\rho^{*}(-1)=\rho(M)$.

## Method Achieves Any $\rho_{S}$ Within Fréchet-Hoeffding Bounds

## Theorem 2

Let $Y_{1} \sim F_{1}$ and $Y_{2} \sim F_{2}$ denote a pair of random variables simulated according to the described method. Assume $F_{1}$ and $F_{2}$ satisfy $\lim _{x \uparrow x_{0}} F_{i}(x)=F_{i}\left(x_{0}-\epsilon_{i}\right)$ for all $x_{0}$ in the support of $F_{i}$, for some $\epsilon_{i}$ depending on $F_{i}$ but not on $x_{0}$. Let $\rho_{S}^{*}(\delta)$ denote $\rho_{S}\left(Y_{1}, Y_{2}\right)$ as a function of $\delta$. Then $\left\{\rho_{S}^{*}(\delta): \delta \in[-1,1]\right\}=\left[\rho_{S}(W), \rho_{S}(M)\right]$.

## Proof.

$\rho_{S}^{*}$ is a continuous function of $\delta$ and $\rho_{S}^{*}(-1)=\rho_{S}(W)$ and $\rho_{S}^{*}(-1)=\rho_{S}(M)$.

## Method Achieves Any $\rho_{S}$ Within Fréchet-Hoeffding Bounds

## Theorem 2

Let $Y_{1} \sim F_{1}$ and $Y_{2} \sim F_{2}$ denote a pair of random variables simulated according to the described method. Assume $F_{1}$ and $F_{2}$ satisfy $\lim _{x \uparrow \chi_{0}} F_{i}(x)=F_{i}\left(x_{0}-\epsilon_{i}\right)$ for all $x_{0}$ in the support of $F_{i}$, for some $\epsilon_{i}$ depending on $F_{i}$ but not on $x_{0}$. Let $\rho_{S}^{*}(\delta)$ denote $\rho_{S}\left(Y_{1}, Y_{2}\right)$ as a function of $\delta$. Then $\left\{\rho_{S}^{*}(\delta): \delta \in[-1,1]\right\}=\left[\rho_{S}(W), \rho_{S}(M)\right]$.

## Proof.

$\rho_{S}^{*}$ is a continuous function of $\delta$ and $\rho_{S}^{*}(-1)=\rho_{S}(W)$ and $\rho_{S}^{*}(-1)=\rho_{S}(M)$.

## Outline

1 Introduction

## - Data Examples <br> - Motivation

2 Characterizing Dependence

- Pearson Correlation
- Spearman Correlation
- Limits to Dependence

3 Simulation Method

- Algorithm
- Limits to Dependence

4 Examples

- Seizure Example
- Weed Example

Introduction

## Seizure Data



## Marginal Model (Diggle, et al. 2002)

$Y_{i j}$ denotes $j$ th observation on $i$ th subject, $i=1, \ldots, 58$,
$j=0, \ldots, 4$.

$$
\mu_{i j}=E\left(Y_{i j}\right)=\exp \left[\log \left(t_{j}\right)+\beta_{0}+\beta_{1} x_{1 j}+\beta_{2} x_{2 i}+\beta_{3} x_{1 j} x_{2 i}\right]
$$

where

$$
\begin{aligned}
x_{1 j} & = \begin{cases}0 & \text { if } j=0 \text { (baseline) } \\
1 & \text { if } j=1,2,3, \text { or } 4\end{cases} \\
x_{2 i} & = \begin{cases}0 & \text { subject } i \text { in placebo group } \\
1 & \text { subject } i \text { in progabide group }\end{cases} \\
t_{j} & = \begin{cases}8 & \text { if } j=0 \\
2 & \text { if } j=1,2,3, \text { or } 4\end{cases}
\end{aligned}
$$

$$
\sigma_{i j}^{2}=\operatorname{var}\left(Y_{i j}\right)=\phi \cdot \mu_{i j}
$$

## Marginal Model Parameter Estimates

Diggle et al. (2002) use Generalized Estimating Equation methodology to estimate model parameters. Plug estimates into model:

$$
\begin{aligned}
\widehat{\mu}_{i j} & =\exp \left[\log \left(t_{j}\right)+1.35+0.11 x_{1 j}-0.11 x_{2 i}-0.3 x_{1 j} x_{2 i}\right] \\
\widehat{\phi} & =10.4
\end{aligned}
$$

## Marginal Model Parameter Estimates

Diggle et al. (2002) use Generalized Estimating Equation methodology to estimate model parameters. Plug estimates into model:

$$
\begin{aligned}
\widehat{\mu}_{i j} & =\exp \left[\log \left(t_{j}\right)+1.35+0.11 x_{1 j}-0.11 x_{2 i}-0.3 x_{1 j} x_{2 i}\right] \\
\widehat{\phi} & =10.4
\end{aligned}
$$

$\widehat{\phi}>1 \Rightarrow$ overdispersed counts, e.g. negative binomial.

## Marginal Model Parameter Estimates

Diggle et al. (2002) use Generalized Estimating Equation methodology to estimate model parameters. Plug estimates into model:

$$
\begin{aligned}
\widehat{\mu}_{i j} & =\exp \left[\log \left(t_{j}\right)+1.35+0.11 x_{1 j}-0.11 x_{2 i}-0.3 x_{1 j} x_{2 i}\right] \\
\widehat{\phi} & =10.4
\end{aligned}
$$

$\widehat{\phi}>1 \Rightarrow$ overdispersed counts, e.g. negative binomial.
Let $\widehat{F}_{i j}$ be the negative binomial CDF with mean $\widehat{\mu}_{i j}$ and variance $\widehat{\phi} \cdot \widehat{\mu}_{i j}$. These will be our target marginals.

## Pearson Correlation

Diggle, et al. (2002) model dependence as

$$
\rho\left(Y_{i j}, Y_{i^{\prime} j^{\prime}}\right)= \begin{cases}0 & \text { if } i \neq i^{\prime} \text { (different subjects) } \\ \alpha & \text { if } i=i^{\prime} \text { and } j \neq j^{\prime} \\ 1 & \text { if } i=i^{\prime} \text { and } j=j^{\prime}\end{cases}
$$

and calculate $\widehat{\alpha}=0.6$.

## Calculating $\Sigma_{z}$

For each pair ( $Y_{i j}, Y_{i j^{\prime}}$ ), $j \neq j^{\prime}$, numerically solve for $\delta=\rho\left(Z_{i j}, Z_{i j^{\prime}}\right)$ :

$$
\begin{aligned}
\hat{\rho}\left(Y_{i j}, Y_{i j^{\prime}}\right)=\frac{1}{\widehat{\sigma}_{i j} \widehat{\sigma}_{i j^{\prime}}} & \left\{\sum _ { r = 0 } ^ { \infty } \sum _ { s = 0 } ^ { \infty } \left(1-\widehat{F}_{i j}(r)-\widehat{F}_{i j^{\prime}}(s)\right.\right. \\
& \left.\left.+\Phi_{\delta}\left\{\Phi^{-1}\left[\widehat{F}_{i j}(r)\right], \Phi^{-1}\left[\widehat{F}_{i j^{\prime}}(s)\right]\right\}\right)-\widehat{\mu}_{i j} \widehat{\mu}_{i j^{\prime}}\right\}
\end{aligned}
$$

where $\Phi_{\delta}$ denotes the bivariate standard normal CDF with correlation $\delta$.

## Simulating Seizure Data

Apply algorithm:

1. Simulate multivariate standard normal vector $\boldsymbol{Z}$ with variance-covariance matrix $\boldsymbol{\Sigma}_{\boldsymbol{z}}$ where the elements of $\boldsymbol{\Sigma}_{\boldsymbol{z}}$ are either 0,1 , or solutions for $\delta$ to the equation corresponding to the pair $\left(Y_{i j}, Y_{i j^{\prime}}\right)$.

## Simulating Seizure Data

Apply algorithm:

1. Simulate multivariate standard normal vector $\boldsymbol{Z}$ with variance-covariance matrix $\boldsymbol{\Sigma}_{\boldsymbol{z}}$ where the elements of $\boldsymbol{\Sigma}_{\boldsymbol{z}}$ are either 0,1 , or solutions for $\delta$ to the equation corresponding to the pair $\left(Y_{i j}, Y_{i j^{\prime}}\right)$.
2. Transform each element of $\boldsymbol{Z}$ to obtain desired marginals:

$$
Y_{i j}=\widehat{F}_{i j}^{-1}\left\{\Phi\left(Z_{i j}\right)\right\}
$$

## Simulating Seizure Data

Apply algorithm:

1. Simulate multivariate standard normal vector $\boldsymbol{Z}$ with variance-covariance matrix $\boldsymbol{\Sigma}_{\boldsymbol{z}}$ where the elements of $\boldsymbol{\Sigma}_{\boldsymbol{z}}$ are either 0,1 , or solutions for $\delta$ to the equation corresponding to the pair $\left(Y_{i j}, Y_{i j^{\prime}}\right)$.
2. Transform each element of $\boldsymbol{Z}$ to obtain desired marginals:

$$
Y_{i j}=\widehat{F}_{i j}^{-1}\left\{\Phi\left(Z_{i j}\right)\right\}
$$

This process yields one simulated data set. Repeat 1000 times.

Introduction

## Simulated Seizure Data Results



## Simulated Seizure Data Results



Introduction

## Simulated Seizure Data Results



## Outline

1 Introduction

## - Data Examples <br> - Motivation

2 Characterizing Dependence

- Pearson Correlation
- Spearman Correlation
- Limits to Dependence

3 Simulation Method

- Algorithm
- Limits to Dependence

4 Examples

- Seizure Example
- Weed Example


## Weed Data



## Marginal Model

Negative binomial hurdle model is a Bernoulli mixture of a point mass at 0 and a negative binomial, left-truncated at 1.

$$
P(Y=y)= \begin{cases}\pi, & y=0 \\ (1-\pi) \cdot \frac{\frac{\Gamma(\theta+y)}{\Gamma(\theta) \Gamma(y+1)}\left(\frac{\theta}{\theta+\mu}\right)^{\theta}\left(\frac{\mu}{\theta+\mu}\right)^{y}}{1-\left(\frac{\theta}{\theta+\mu}\right)^{\theta}}, & y \geq 1\end{cases}
$$

Model $\pi$ and negative binomial mean $\mu$ as functions of covariate, $x=$ soil magnesium.

## Negative Binomial Hurdle CDF

The CDF for $Y_{i}$ is then

$$
F_{i}(y)=\pi_{i}+\frac{1-\pi_{i}}{1-g_{i}\left(0 \mid \mu_{i}, \theta\right)}\left\{G_{i}\left(y \mid \mu_{i}, \theta\right)-g_{i}\left(0 \mid \mu_{i}, \theta\right)\right\}
$$

for $y \geq 0$, where $G_{i}\left(\cdot \mid \mu_{i}, \theta\right)$ and $g_{i}\left(\cdot \mid \mu_{i}, \theta\right)$ are the negative binomial CDF and PDF with

$$
\log \left(\mu_{i}\right)=\beta_{0}+\beta_{1} x_{i}
$$

and

$$
\operatorname{logit}\left(\pi_{i}\right)=\gamma_{0}+\gamma_{1} x_{i}
$$

## Negative Binomial Hurdle CDF

The CDF for $Y_{i}$ is then

$$
F_{i}(y)=\pi_{i}+\frac{1-\pi_{i}}{1-g_{i}\left(0 \mid \mu_{i}, \theta\right)}\left\{G_{i}\left(y \mid \mu_{i}, \theta\right)-g_{i}\left(0 \mid \mu_{i}, \theta\right)\right\}
$$

for $y \geq 0$, where $G_{i}\left(\cdot \mid \mu_{i}, \theta\right)$ and $g_{i}\left(\cdot \mid \mu_{i}, \theta\right)$ are the negative binomial CDF and PDF with

$$
\log \left(\mu_{i}\right)=\beta_{0}+\beta_{1} x_{i}
$$

and

$$
\operatorname{logit}\left(\pi_{i}\right)=\gamma_{0}+\gamma_{1} x_{i}
$$

Plug in estimates of $\beta_{0}, \beta_{1}, \gamma_{0}, \gamma_{1}$, and overdispersion parameter $\theta$ to obtain target marginal CDFs.

Introduction

## Weed Data With Fitted Means

## NB Hurdle Fit



## The Principle of Spatial Dependence

Dependence between observations is higher when they are close together.


Distance

## Variogram Characterizes Spatial Dependent

$\operatorname{var}\left(Y_{i}-Y_{j}\right)$ is small if $Y_{i}$ and $Y_{j}$ are dependent.


## Stationarity

A typical spatial data set represents a single incomplete sample of size $N=1$ from a spatial random process.

## Stationarity

A typical spatial data set represents a single incomplete sample of size $N=1$ from a spatial random process.

To make inference feasible, we assume stationarity, i.e. $E\left(Y_{i}\right)=E\left(Y_{j}\right)$ and $\operatorname{var}\left(Y_{i}-Y_{j}\right)=2 \gamma\left(\boldsymbol{h}_{i j}\right)$, where $\boldsymbol{h}_{i j}$ is the vector between locations of $Y_{i}$ and $Y_{j}$, and $\gamma(\cdot)$ is called the semivariogram.

## Stationarity

A typical spatial data set represents a single incomplete sample of size $N=1$ from a spatial random process.

To make inference feasible, we assume stationarity, i.e. $E\left(Y_{i}\right)=E\left(Y_{j}\right)$ and $\operatorname{var}\left(Y_{i}-Y_{j}\right)=2 \gamma\left(\boldsymbol{h}_{i j}\right)$, where $\boldsymbol{h}_{i j}$ is the vector between locations of $Y_{i}$ and $Y_{j}$, and $\gamma(\cdot)$ is called the semivariogram.

Weed counts are not stationary: means differ, and larger means are associated with larger variance.

## Stationarity

A typical spatial data set represents a single incomplete sample of size $N=1$ from a spatial random process.

To make inference feasible, we assume stationarity, i.e.
$E\left(Y_{i}\right)=E\left(Y_{j}\right)$ and $\operatorname{var}\left(Y_{i}-Y_{j}\right)=2 \gamma\left(\boldsymbol{h}_{i j}\right)$, where $\boldsymbol{h}_{i j}$ is the vector between locations of $Y_{i}$ and $Y_{j}$, and $\gamma(\cdot)$ is called the semivariogram.

Weed counts are not stationary: means differ, and larger means are associated with larger variance.

Stationarity assumption is more reasonable for ranks than counts.

## Ranking Spatial Data

Estimator of $\rho_{S}$ uses sample $\left(X_{1}, Y_{1}\right), \ldots,\left(X_{n}, Y_{n}\right)$, but spatial sample has no replication.

## Ranking Spatial Data

Estimator of $\rho_{S}$ uses sample $\left(X_{1}, Y_{1}\right), \ldots,\left(X_{n}, Y_{n}\right)$, but spatial sample has no replication.

Kruskal (1958): Population analog of rank $r\left(Y_{i}\right)$ is $F\left(Y_{i}\right)$.

## Ranking Spatial Data

Estimator of $\rho_{S}$ uses sample $\left(X_{1}, Y_{1}\right), \ldots,\left(X_{n}, Y_{n}\right)$, but spatial sample has no replication.

Kruskal (1958): Population analog of rank $r\left(Y_{i}\right)$ is $F\left(Y_{i}\right)$.
For each $Y_{i}$, we can estimate its CDF $F_{i}$ by plugging in point estimates of the parameters.

## Ranking Spatial Data

Estimator of $\rho_{S}$ uses sample $\left(X_{1}, Y_{1}\right), \ldots,\left(X_{n}, Y_{n}\right)$, but spatial sample has no replication.

Kruskal (1958): Population analog of rank $r\left(Y_{i}\right)$ is $F\left(Y_{i}\right)$.
For each $Y_{i}$, we can estimate its CDF $F_{i}$ by plugging in point estimates of the parameters.

If $Y_{i}$ is unusually large (or small), given its estimated distribution, $\hat{F}_{i}\left(Y_{i}\right)$ will also be unusually large (or small), but $\hat{F}_{1}\left(Y_{1}\right), \ldots, \hat{F}_{n}\left(Y_{n}\right)$ will all be on the same scale.

## Estimating Spatial Dependence

Fit a parametric semivariogram model to the "ranked" spatial counts.


For $Y_{i}$ and $Y_{j}$ separated by a distance of $h_{i j}$,

$$
\begin{aligned}
& \frac{1}{2} \widehat{\operatorname{var}}\left[F_{i}\left(Y_{i}\right)-F_{j}\left(Y_{j}\right)\right]= \\
& \quad 0.03+0.027\left(1-e^{-h_{i j} / 1.36}\right) \\
& \Rightarrow \hat{\rho}_{R S}\left(Y_{i}, Y_{j}\right)=0.47 e^{-h_{i j} / 1.36}
\end{aligned}
$$

Distance

## Calculating $\Sigma_{z}$

1. For each pair $i, j$, obtain

$$
\hat{\rho}_{S}\left(Y_{i}, Y_{j}\right)=\left\{\left[1-\sum_{r=0}^{\infty} \hat{f}_{i}(r)^{3}\right]\left[1-\sum_{s=0}^{\infty} \hat{f}_{j}(s)^{3}\right]\right\}^{1 / 2} \cdot \hat{\rho}_{R S}\left(Y_{i}, Y_{j}\right)
$$

where $\hat{f}_{i}$ and $\hat{f}_{j}$ are the estimated PMFs of $Y_{i}$ and $Y_{j}$.

## Calculating $\Sigma_{z}$

1. For each pair $i, j$, obtain

$$
\hat{\rho}_{S}\left(Y_{i}, Y_{j}\right)=\left\{\left[1-\sum_{r=0}^{\infty} \hat{f}_{i}(r)^{3}\right]\left[1-\sum_{s=0}^{\infty} \hat{f}_{j}(s)^{3}\right]\right\}^{1 / 2} \cdot \hat{\rho}_{R S}\left(Y_{i}, Y_{j}\right)
$$

where $\hat{f}_{i}$ and $\hat{f}_{j}$ are the estimated PMFs of $Y_{i}$ and $Y_{j}$.
2. Then numerically solve for $\delta=\rho\left(Z_{i}, Z_{j}\right)$ :

$$
\begin{aligned}
\hat{\rho}_{S}\left(Y_{i}, Y_{j}\right)=3 \sum_{r=0}^{\infty} \sum_{s=0}^{\infty} & \hat{f}_{i}(r) \hat{f}_{j}(s)\left(\Phi_{\delta}\left\{\Phi^{-1}\left[\hat{F}_{i}(r-1)\right], \Phi^{-1}\left[\hat{F}_{j}(s-1)\right]\right\}\right. \\
& +\Phi_{\delta}\left\{\Phi^{-1}\left[1-\hat{F}_{i}(r)\right], \Phi^{-1}\left[1-\hat{F}_{j}(s)\right]\right\} \\
& -\Phi_{-\delta}\left\{\Phi^{-1}\left[\hat{F}_{i}(r-1)\right], \Phi^{-1}\left[1-\hat{F}_{j}(s)\right]\right\} \\
& \left.-\Phi_{-\delta}\left\{\Phi^{-1}\left[1-\hat{F}_{i}(r)\right], \Phi^{-1}\left[\hat{F}_{j}(s-1)\right]\right\}\right)
\end{aligned}
$$

## Apply Algorithm

Retain locations and covariate values from data set.

1. Simulate a multivariate standard normal vector $\boldsymbol{Z}$ with correlation matrix $\boldsymbol{\Sigma}_{\boldsymbol{Z}}$.

## Apply Algorithm

Retain locations and covariate values from data set.

1. Simulate a multivariate standard normal vector $\boldsymbol{Z}$ with correlation matrix $\boldsymbol{\Sigma}_{\boldsymbol{Z}}$.
2. Set $Y_{i}=\hat{F}_{i}^{-1}\left\{\Phi\left(Z_{i}\right)\right\}$.

## Apply Algorithm

Retain locations and covariate values from data set.

1. Simulate a multivariate standard normal vector $\boldsymbol{Z}$ with correlation matrix $\boldsymbol{\Sigma}_{\boldsymbol{Z}}$.
2. Set $Y_{i}=\hat{F}_{i}^{-1}\left\{\Phi\left(Z_{i}\right)\right\}$.

Repeat 1000 times to obtain 1000 data sets.

Introduction

## Two Outlier Processes



Introduction

## Outliers Localized

Weed Counts


Magnesium


## Empirical Observations About Outliers

- Outliers occur in the region between $y=17$ and $y=33$ meters.
- Outliers associated with mg between 250 and 300 are between 12.9 and 14.9 larger than target means, whereas outliers associated with mg above 330 are between 2.6 and 10.3 larger.


## Augmenting the Simulated Data with Outliers

For each of the 1000 simulated data sets,

- Randomly select 4 to 6 locations with $y$-coordinates between 17 and 33 and mg between 250 and 300 .
- Set these counts equal to the integer part of target mean plus a random uniform on $(12,15)$.
- Randomly select another 4 to 6 points with $y$-coordinates between 17 and 33 and mg exceeding 330.
- Set these to the integer part of target means plus a random uniform on $(2,11)$.


## Simulated Data vs. Observed Data



## Simulated Data vs. Observed Data



## Simulated Data vs. Observed Data



## A Couple of Simulated Maps

Weed Counts


Weed Counts


## References

囯 S．Heijting，W．Van Der Werf，A．Stein，and M．J．Kropff （2007），Are weed patches stable in location？Application of an explicitly two－dimensional methodology，Weed Research 47 （5），pp．381－395．DOI：10．1111／j．1365－3180．2007．00580．x
嗇 W．H．Kruskal（1958），Ordinal measures of association， Journal of the American Statistical Association 53，pp． 814－861．
䍰 L．Madsen and D．Birkes（2013），Simulating dependent discrete data，Journal of Computational and Graphical Statistics，83（4），pp．677－691．

囯 J．Nešlehová（2007），On rank correlation measures for non－continuous random variables，Journal of Multivariate Analysis 98，pp．544－567．

