GraphingCalculator 4; Window 46 6 859 1202; PaneDivider 168; SignificantDigits 14; FontSizes 14; SliderControlValue 0; 2D.Scale 0.1 0.1 5 5; 2D.BottomLeft -0.23125 0.89375; 2D.GraphPaper 0; 2Dp.BottomLeft -1 -0.453125; 2Dp.GraphPaper 0; Text "Plots of the amplitude and phase of the steady-state response of a damped oscillator to a sinusoidal driving force as functions of driving frequency. Version 0.3 3-31-10 "; Color 4; Expr k=9,m=1; Color 8; Expr d=b/(2*m); Color 7; Expr a=sqrt(W_0^2-d^2); Color 7; Expr W_0=sqrt(k/m); Text "A,B – amplitude; k – spring constant; m – mass, b – damping constant; d – damping parameter; a – angular frequency; W – natural frequency. Phase of response defined so that steady-state response is Xcos(Wt-P)."; Color 2; MathPaneSlider 3; Expr F_0=slider([0,5,10]); Color 4; MathPaneSlider 2; Expr b=slider([0,5,40]); Color 2; Expr function(X,x,d)=[F_0/m]/sqrt([W_0^2-x^2]^2+4*d^2*x^2); Color 6; Expr X_m=F_0/m/(2*d*a); Expr y=function(X,x,g),in(g,set(0.4,0.6,1)); Color 2; Expr y=function(X,x,d); Color 5; Expr P=atan([2*d*f/(W_0^2-f^2)]); Color 2; Expr function(P,x)=branch(if(atan([2*d*x/(W_0^2-x^2)]),xW_0)); Color 2; Expr prime(y)=function(P,prime(x)); Color 17; Expr prime(y)=a*pi/2,in(a,set(1,2)); Color 3; Expr R=sqrt(W_0^2-(2*d^2)); Color 17; Expr prime(x)=W_0; Text "Natural frequency; resonant frequency; frequency of (under)damped oscillator. "; Color 17; Expr x=W_0; Color 17; Expr x=R; Color 17; Expr x=sqrt(W_0^2-d^2); Color 17; Expr y=X_m; Text "FWHM is about 2d for light damping:"; Color 17; Expr R-d";