GraphingCalculator 4; Window 47 6 862 1440; PaneDivider 325; FontSizes 14; Slider 0 100; SliderSteps 500; SliderControlValue 0; 2D.Scale 0.5 0.25 2 1; 2D.BottomLeft -3.265625 -0.875; 2D.GraphPaper 0; Text "Plot of response of a damped oscillator to a sinusoidal driving force as a function of time. Version 0.92, 4-24-14 With k=9 and m=1, the natural frequency W=3, so critical damping (W=d) occurs when b=6. Change range of b to [0,1] to see very light damping. To do: (i) Add choice of initial conditions that match in all three cases (x(0)=A v_x(0)=0)."; Color 4; Expr k=9,m=1; Color 5; MathPaneSlider 1; Expr b=slider([0,10,100]); Color 8; Expr d=b/(2*m); Color 7; Expr a=sqrt(W^2-d^2); Color 7; Expr W=sqrt(k/m); Color 2; Expr A_0=3; Text "A0 – undamped amplitude; k – spring constant; m – mass, b – damping constant; d – damping parameter; a – angular frequency; W – natural frequency; c – overdamped ""frequency""; p = phase constant Three sets of initial conditions such that all three solutions match at t=0. The first set has x(0)=A and phase constant p=0 but does not try to match initial velocities: A=A0, B=0,C=A,D=A,G=0,p=0 The second set has x(0)=A and phase constant p=0 while matching initial velocities, v_x(0)=-dA: A=A0, B=A/2,C=A/2,D=A,G=0,p=0 The third set matches the initial position and velocity of the undamped case, x(0)=A0 and v_x(0)=0: A=A0/cosp, B=(c-d)/2c*A0, C=(c+d)/2c*A0,D=A0,G=d*A0,p=-atan(d/a)"; Expr A=A_0,B=0,C=A_0,D=A_0,G=0,p=0; Text "Underdamped:"; Color 17; Expr A*e^(-(d*x))*cos([a*x+p]),x>0; Text "Envelope:"; Color 17; Expr y^2=A^2*e^(-(2*d*x)),x>0,a>0; Text "Undamped:"; Color 17; Expr A_0*cos(W*x),x>0; Text "Critically damped (d=W; occurs at b=6 with k=9 and m=1)(putting exponent = -dx in full solution changes critical solution with changing b):"; Color 17; Expr [D+G*x]*e^(-(W*x)),x>0; Color 17; Expr A*e^(-(W*x)),x>0; Text "Overdamped:"; Color 3; Expr c=sqrt(d^2-W^2); Color 17; Expr [B*e^(-(c*x))+C*e^(c*x)]*e^(-(d*x)),x>0; Text "Full solution:"; Expr function(H,x)=branch(if(A*e^(-(d*x))*cos([a*x+p]),dW)); Text "Driving:"; Color 2; Expr F_0=slider([0,10,20]); Color 4; MathPaneSlider 10; Expr f=slider([0,10,100]); Color 3; Expr function(F,x)=F_0*cos([f*x-p]),x>0; Color 6; Expr X=[F_0/m]/sqrt([W^2-f^2]^2+4*d^2*f^2); Color 5; Expr P=atan([2*d*f/(W^2-f^2)]); Color 3; Expr T=slider([0,1]); Color 8; Expr Q=2*pi*T; Text "F0 – magnitude of driving force; f – angular frequency of driving force; Q – phase of driving force; X – amplitude of driven oscillation; P – phase of driven oscillation"; Text " Steady state, transient piece, and driving force:"; Color 17; Expr function(H,x)+X*cos([f*x-P-Q]),x>0; Color 17; Expr function(H,x),x>0; Color 17; Expr function(F,x),x>0; Text "Animated:"; Grain 1; Expr vector(n*t,function(H,n*t)+X*cos([f*n*t-P-Q])); Color 3; Expr vector(n,function(H,n)+X*cos([f*n-P-Q])); Text "Envelope top & bottom:"; Color 17; Expr A*e^(-(d*x)),x>0,a>0; Color 17; Expr -(A*e^(-(d*x))),x>0,a>0; Text " Author: David A. Craig <";